Difference between revisions of "Mathematics"

From Superliminal Wiki
Jump to: navigation, search
Line 3: Line 3:
 
This page lists some mathematical properties of multi-dimensional puzzles, mostly numbers of their positions.
 
This page lists some mathematical properties of multi-dimensional puzzles, mostly numbers of their positions.
  
There may be non-mathematicians reading this, so here is a short introduction to these issues; however, some calculations may be of more advanced level:<br>
+
There may be non-mathematicians reading this, so here is an introduction to these issues; however, some calculations may be of more advanced level:<br>
 
If we have ''a'' pieces, we can permute them ''a''! ways; this can be easily shown: Suppose we remove all the pieces. If we are placing the first one, there are ''a'' ways to do so. For the second piece, there are, however, only ''a'' − 1, since one is already occupied by the first piece, and both these pieces have together ''a'' × (''a'' − 1) permutations as there are ''a'' − 1 positions of the second piece per each of the ''a'' positions of the first piece. If we continue this way, it becomes clear that there are ''a'' × (''a'' − 1) × (''a'' − 2) × ... × 3 × 2 × 1 (we actually have no choice for the last ''a''-th piece), which is conventionally denoted as ''a''!.<br>
 
If we have ''a'' pieces, we can permute them ''a''! ways; this can be easily shown: Suppose we remove all the pieces. If we are placing the first one, there are ''a'' ways to do so. For the second piece, there are, however, only ''a'' − 1, since one is already occupied by the first piece, and both these pieces have together ''a'' × (''a'' − 1) permutations as there are ''a'' − 1 positions of the second piece per each of the ''a'' positions of the first piece. If we continue this way, it becomes clear that there are ''a'' × (''a'' − 1) × (''a'' − 2) × ... × 3 × 2 × 1 (we actually have no choice for the last ''a''-th piece), which is conventionally denoted as ''a''!.<br>
Now, each of the ''a'' pieces can be oriented ''b'' if it stays in place. This means that there will be ''b''^''a'' ways to only orient the pieces if we do not permute them, because there are ''b'' orientations of the first piece per ''b'' orientations of the second piece etc.<br>
+
Now, each of the ''a'' pieces can be oriented ''b'' if it stays in place. This means that there will be ''b''<sup>''a''</sup> ways to only orient the pieces if we do not permute them, because there are ''b'' orientations of the first piece per ''b'' orientations of the second piece etc.<br>
Multiplying these numbers should give us the total number of a puzzle’s positions (there are ''b''^''a'' orientations per each of ''a''! permutations), but it often happens that not all of them are reachable by using legal moves, and we have to divide this figure due to these constraints (if the pieces’ permutations have given parity, the permutation constraint ''c'' = 2 because only half of the permutations are attainable. With regard to orientations, we can say that all but last pieces have ''b'' (''a'' − 1) orientations in total and it may happen that the last piece cannot reach all orientations, so it has only ''b''/''d'', where ''d'' is the orientation constraint). Also, if there are some pieces that are not distinguishable from each other and we swap them, the change will not be visible, and we therefore regard them as the same position. If there are ''e'' colours and ''f'' pieces per each one, we can freely permute the ''f'' pieces of the same colour, and, as a consequence, we have to divide by ''f''!^''e''.
+
Multiplying these numbers should give us the total number of a puzzle’s positions (there are ''b''<sup>''a''</sup> orientations per each of ''a''! permutations), but it often happens that not all of them are reachable by using legal moves, and we have to divide this figure due to constraints (if the pieces’ permutations have given parity, the permutation constraint ''c'' = 2 because only half of the permutations are attainable. With regard to orientations, we can say that all but last pieces have ''b''<sup>''a'' − 1</sup> orientations in total and it may happen that the last piece cannot reach all orientations, so it has only ''b''/''d'', where ''d'' is the orientation constraint. Also, if there are some pieces that are not distinguishable from each other and we swap them, the change will not be visible, and we therefore regard them as the same position. If there are sets of ''e'' indistinguishable pieces, we have to divide by ''e''!<sup>''a''/''e''</sup> as a consequence, because the ''e''! possible permutations of a set are not distinguishable and there are (logically) ''a''/''e'' such sets).
  
 
The general structure of the data presented here is of this form:
 
The general structure of the data presented here is of this form:
  
*''n''-colour pieces type ''m'': count (''a''); number of orientations (''b''); permutation constraint (''c''); orientation constraint (''d''); indistinguishability constraint (''f''!^''e'')
+
*''n''-colour pieces type ''X'': count (''a''); number of orientations (''b''); permutation constraint (''c''); orientation constraint (''d''); indistinguishability constraint (''e'')
  
The position count of a row is then ''a''!/(''c'' × ''e'') × (''b''^''a'')/''d''. <br>
+
The position count of a row is then ''a''!/(''c'' × ''e''!<sup>''a''/''e''</sup>) × (''b''<sup>''a''</sup>)/''d''. <br>
 
Number of positions of the whole puzzle is the product of position counts of all its rows.
 
Number of positions of the whole puzzle is the product of position counts of all its rows.
  
Values in parentheses are a “common constraint”, and are counted as one. This happens when more types of pieces have a given parity together, so that one may for example perform only odd permutations of both or even permutations of both. This results in ''c'' = 2, counted only once despite applying to more types.
+
The pieces are divided first by number of colours and then by types, which are determined by orbits – a piece in a given type can reach the positions of all other pieces in that type by legal moves.<br>
When is a whole type type in parentheses, it means that those pieces are there, but are immobile. By “mobile”, I mean permutable and/or orientable, that is, mobile are pieces that can change their state.
+
The types are listed in such order that they go “from centre”.<br>
 +
They are named based on which feature of the shape are they in, so for example on tesseract, “1-colour type 1.3” means that it is on face (1) of a cube and on that face it is in the corner (3). “Two-colour type 2.2” signifies that it is on edge of a square and that it is alternative (2; just to distinguish between it and type 2.1, because they behave differently). Subscripts are added to number pieces which would get the same type. <br>
 +
When listing general properties of a class of puzzles, it is first noted how many times does the type appear.
 +
 
 +
Values in parentheses are a “common constraint”, and are counted as one. This happens when more types of pieces have a given parity together, so that one may for example perform only odd permutations of both or even permutations of both. This results in ''c'' = 2, counted only once despite applying to more types.<br>
 +
When is a whole type or number of some pieces is in parentheses and italics, it means that (some of) those pieces are there, but are immobile. By “mobile”, I mean permutable and/or orientable, that is, mobile are pieces that can change their state.<br>
 
Numbers of pieces in square brackets denote the impossibility of permuting this type of pieces.
 
Numbers of pieces in square brackets denote the impossibility of permuting this type of pieces.
  
Some puzzles have no fixed reference points, and it is necessary to include a “puzzle orientation constraint”, because we counted all its positions in all of the puzzle’s orientations. This constraint is equal to the number of orientations of the whole shape. This can also be viewed as fixing one piece in place.
+
Some puzzles have no fixed reference points, and it is necessary to include a “puzzle orientation constraint”, because we counted all its positions in all of the puzzle’s orientations. This constraint is equal to the number of orientations of the whole ''m''-dimensional shape, which can be easily calculated as the number of ''m''-faces multiplied by the number of (''m − 1'')-faces in each ''m''-face multiplied by number of (''m − 2'')-faces in each (''m'' − 1)-face multiplied by ... multiplied by the number of 1-faces in each 2-face (''x''-face is ''x''-dimensional part of the shape). This can also be viewed as fixing one piece in place.
  
Numbers in this page are named according to Conway’s and Guy’s naming scheme.
+
Numbers in this page are named according to Conway’s and Guy’s naming scheme extended in Saibian’s fashion when necessary.
  
Calculated by [[User:Jakub Štepo|Jakub Štepo]]. I do not guarantee the correctness of my results, but there should not be any mistakes.
+
Calculated by [[User:Jakub Štepo|Jakub Štepo]] unless stated otherwise. I do not guarantee the correctness of my results and some may be unverified, so feel free to correct or add content.
  
 
==MagicCube4D==
 
==MagicCube4D==
Line 29: Line 34:
 
==={3,3,3}===
 
==={3,3,3}===
  
*Shape: Regular pentachoron
+
*Shape: Regular 5-cell (pentachoron)
 
*Cells (colours): 5 regular tetrahedra {3,3}
 
*Cells (colours): 5 regular tetrahedra {3,3}
 
*Faces: 10 equilateral triangles {3}
 
*Faces: 10 equilateral triangles {3}
Line 37: Line 42:
 
====Length 2====
 
====Length 2====
  
*4-colour: [5]; 12; 1; 1
+
*4-colour: Type 1: [5]; 12; 1; 1; 1
*(5-colour: 1)
+
*''(5-colour: 1)''
*Total mobile pieces: 5
+
*Total pieces: 5 ''(6)''
 
*Total stickers: 25
 
*Total stickers: 25
  
 
Number of positions:<br>
 
Number of positions:<br>
12^5 =<br>
+
12<sup>5</sup> =<br>
= 248 832
+
= 248 832 ≈<br>
 +
≈ 2.49 × 10<sup>5</sup><br>
 +
= 248 thousand 832
  
 
====Length 3====
 
====Length 3====
  
*3-colour: 10; 6; 2; 2
+
*3-colour: Type 1: 10; 6; 2; 2; 1
 
*4-colour: 10
 
*4-colour: 10
**Type 1: [5]; 12; 1; 1
+
**Type 1: [5]; 12; 1; 1; 1
**Type 2: [5]; 12; 1; 1
+
**Type 2: [5]; 12; 1; 1; 1
*Total mobile pieces: 20
+
*Total pieces: 20
 
*Total stickers: 70
 
*Total stickers: 70
  
 
Number of positions:<br>
 
Number of positions:<br>
10!/2 × (6^10)/2 × (12^5)^2 =<br>
+
10!/2 × 6<sup>10</sup>/2 × (12<sup>5</sup>)<sup>2</sup> =<br>
= 3 396 471 743 308 934 991 052 800 ≈<br>
+
= 3 396 471 743 308 934 991 052 800 ≈<br>
≈ 3.40×10^24<br>
+
≈ 3.40 × 10<sup>24</sup><br>
3 septillion 396 sextillion (short scale) / 3 quadrillion 396 trilliard (long scale)
+
3 septillion 396 sextillion (short scale) / 3 quadrillion 396 trilliard (long scale)
  
 
====Length 4====
 
====Length 4====
  
*2-colour: 10; 2; 2; 2
+
*2-colour: Type 1: 10; 2; 2; 2; 1
 
*3-colour: 30
 
*3-colour: 30
**Type 1: 10; 6; 2; 2
+
**Type 1: 10; 6; 2; 2; 1
**Type 2: 20; 3; 2; 3
+
**Type 2: 20; 3; 2; 3; 1
 
*4-colour: 10
 
*4-colour: 10
**Type 1: [5]; 12; 1; 1
+
**Type 1: [5]; 12; 1; 1; 1
**Type 2: [5]; 12; 1; 1
+
**Type 2: [5]; 12; 1; 1; 1
*Total mobile pieces: 50
+
*Total pieces: 50
 
*Total stickers: 150
 
*Total stickers: 150
  
 
Number of positions:<br>
 
Number of positions:<br>
10!/2 × (2^10)/2 × 10!/2 × (6^10)/2 × 20!/2 × (3^20)/3 × (12^5)^2 =<br>
+
10!/2 × 2<sup>10</sup>/2 × 10!/2 × 6<sup>10</sup>/2 × 20!/2 × 3<sup>20</sup>/3 × (12<sup>5</sup>)<sup>2</sup> =<br>
= 4 460 971 667 252 991 547 434 208 214 041 871 442 189 607 102 945 689 600 000 000 ≈<br>
+
= 4 460 971 667 252 991 547 434 208 214 041 871 442 189 607 102 945 689 600 000 000≈<br>
≈ 4.46×10^60<br>
+
≈ 4.46 × 10<sup>60</sup><br>
4 novemdecillion 461 octodecillion (short scale) / 4 decillion 461 nonilliard (long scale)
+
4 novemdecillion 461 octodecillion (short scale) / 4 decillion 461 nonilliard (long scale)
  
 
====Length 5====
 
====Length 5====
  
*1-colour: 5; 1; 2; 1
+
*1-colour: Type 1: 5; 1; 2; 1; 1
 
*2-colour: 40
 
*2-colour: 40
**Type 1: 10; 2; 2; 2
+
**Type 1: 10; 2; 2; 2; 1
**Type 2; 30; 2; 2; 2; 3!^10
+
**Type 3: 30; 2; 1; 2; 3
 
*3-colour: 50
 
*3-colour: 50
**Type 1: 10; 6; 2; 2
+
**Type 1: 10; 6; 2; 2; 1
**Type 2: 20; 3; 2; 3
+
**Type 2<sub>1</sub>: 20; 3; 2; 3; 1
**Type 3: 20; 3; 2; 3
+
**Type 2<sub>2</sub>: 20; 3; 2; 3; 1
 
*4-colour: 10
 
*4-colour: 10
**Type 1: [5]; 12; 1; 1
+
**Type 1: [5]; 12; 1; 1; 1
**Type 2: [5]; 12; 1; 1
+
**Type 2: [5]; 12; 1; 1; 1
*Total mobile pieces: 105
+
*Total pieces: 105
 
*Total stickers: 275
 
*Total stickers: 275
  
 
Number of positions:<br>
 
Number of positions:<br>
5!/2 × 10!/2 × (2^10)/2 × 30!/(2 × 3!^10) × (2^30)/2 × 10!/2 × (6^10)/2 × (20!/2 × (3^20)/3)^2 × (12^5)^2 =<br>
+
5!/2 × 10!/2 × 2<sup>10</sup>/2 × 30!/(3!<sup>10</sup>) × 2<sup>30</sup>/2 × 10!/2 × 6<sup>10</sup>/2 × (20!/2 × (3<sup>20</sup>)/3)<sup>2</sup> × (12<sup>5</sup>)<sup>2</sup> =<br>
= 445 622 002 487 959 948 988 374 180 175 268 013 222 358 960 900 098 014 140 915 354 610 363 142 029 430 609 380 392 027 056 585 782 067 200 000 000 000 000 000 000 ≈<br>
+
= 891 244 004 975 919 897 976 748 360 350 536 026 444 717 921 800 196 028 281 830 709 220 726 284 058 861 218 760 784 054 113 171 564 134 400 000 000 000 000 000 000 ≈<br>
4.46×10^122<br>
+
8.91 × 10<sup>122</sup><br>
445 noventrigintillion 622 octotrigintillion (short scale) / 445 vigintillion 622 novendecilliard (long scale)
+
891 noventrigintillion 244 octotrigintillion (short scale) / 891 vigintillion 244 novendecilliard (long scale)
  
 
==={4,3,3}===
 
==={4,3,3}===
  
*Shape: Regular tesseract
+
*Shape: Tesseract
 
*Cells (colours): 8 cubes {4,3}
 
*Cells (colours): 8 cubes {4,3}
 
*Faces: 24 squares {4}
 
*Faces: 24 squares {4}
 
*Edges: 32
 
*Edges: 32
 
*Vertices: 16
 
*Vertices: 16
 +
 +
Length ''n'', ''n'' ≥ 2:
 +
*1-colour: ((''n'' − 2)<sup>3</sup> − ''n'' mod 2) × 8 ''((''n'' − 2)<sup>3</sup> × 8)''
 +
**''(Type 0: 8  ''n'' mod 2)''
 +
**Type 1.1: 48; 1; 1; 1; 6; × (''n'' − 3)/2 × ''n'' mod 2
 +
**Type 1.2.1: 192; 1; 1; 1; 24; × (''n'' − 5)(''n'' − 3)/2 × ''n'' mod 2
 +
**Type 1.2.2: 192; 1; 1; 1; 24; ×⌊(‘'n'' − 6)/2⌋⌊(''n'' − 4)/2⌋⌊(''n'' − 2)/2⌋/3
 +
**Type 1.3: 192; 1; 1; 1; 24; × ⌊(''n'' − 4)/2⌋⌊(''n'' − 2)/2⌋/2
 +
**Type 2.1: 96; 1; 1; 1; 12; × (''n'' − 3)/2 × ''n'' mod 2
 +
**Type 2.2: 192; 1; 1; 1; 24; × ⌊(''n'' − 4)/2⌋⌊(''n'' − 2)/2⌋/2
 +
**Type 3: 64; 1; 1; 1; 8; × ⌊(''n'' − 2)/2⌋
 +
*2-colour: (''n'' − 2)<sup>2</sup> × 24
 +
**Type 1: 24; 2; 2; 2; 1; × ''n'' mod 2
 +
**Type 2.1: 96; 2; 1; 2; 4; × (''n'' − 3)/2 × ''n'' mod 2
 +
**Type 2.2: 192; 1; 1; 1; 4; × ⌊(''n'' − 4)/2⌋⌊(''n'' − 2)/2⌋/2
 +
**Type 3: 2; 1; 2; 4; × ⌊(''n'' − 2)/2⌋
 +
*3-colour: (''n'' − 2) × 32
 +
**Type 1: 32; 6; 2; 2; 1; × ''n'' mod 2
 +
**Type 2: 64; 3; 2; 3; 1; × ⌊(''n'' − 2)/2⌋
 +
*4-coloured: 16; 12; 2; 3; 1; × 1
 +
*Puzzle orientation constraint: 192; × (''n'' + 1) mod 2
 +
*Total pieces: ''n''<sup>4</sup> − (''n'' − 2)<sup>4</sup> - ''n'' mod 2 ''(''n''<sup>4</sup> − (''n '' − 2)<sup>4</sup>)''
 +
*Total stickers: 8''n''<sup>3</sup>
 +
 +
Number of positions:<br>
 +
((((48! × 96!<sup>2</sup> × 2<sup>96</sup>)/(6!<sup>8</sup> × 12!<sup>8</sup> × 4!<sup>24</sup> × 2))<sup>(''n'' − 3)/2</sup> × (24! × 32! × 2<sup>24</sup> × 6<sup>32</sup>)/(2<sup>3</sup>))<sup>''n'' mod 2</sup> × (192!/(24!<sup>8</sup>))<sup>(''n'' − 5)(''n'' − 3)/2 × ''n'' mod 2 + ⌊(''n'' − 4)/2⌋⌊(''n'' − 2)/2⌋⌊''n''/2⌋/3</sup> × ((64!<sup>2</sup> × 3<sup>64</sup>)/(8!<sup>8</sup> × 2 × 3))<sup>⌊(''n'' − 2)/2⌋</sup> × (192!/(4!<sup>48</sup>))<sup>⌊(''n'' − 4)/2⌋⌊(''n'' − 2)/2⌋/2</sup> × (16! × 12<sup>16</sup>)/(2 × 3))/(192<sup>(''n'' + 1) mod 2</sup>)
  
 
====Length 2====
 
====Length 2====
  
*4-colour: 16; 12; 2; 3
+
*4-colour: 16; 12; 2; 3; 1
 
*Puzzle orientation constraint: 192
 
*Puzzle orientation constraint: 192
*Total mobile pieces: 16
+
*Total pieces: 16
 
*Total stickers: 64
 
*Total stickers: 64
  
 
Number of positions:<br>
 
Number of positions:<br>
(16!/2 × (12^6)/3)/192 =<br>
+
(16!/2 × 12<sup>6</sup>/3)/192 =<br>
= 3 357 894 533 384 932 272 635 904 000 ≈<br>
+
= 3 357 894 533 384 932 272 635 904 000 ≈<br>
≈ 3.36×10^27<br>
+
≈ 3.36 × 10<sup>27</sup><br>
3 octillion 358 septillion (short scale) / 3 quadrilliard 358 quadrillion (long scale)
+
3 octillion 358 septillion (short scale) / 3 quadrilliard 358 quadrillion (long scale)
  
 
====Length 3====
 
====Length 3====
  
*(1-colour: 8)
+
*’'(1-colour: Type 0: 8)''
*2-colour: 24; 2; (2); 2
+
*2-colour: Type 1: 24; 2; (2); 2; 1
*3-colour: 32; 6; (2); 2
+
*3-colour: Type 1: 32; 6; (2); 2; 1
*4-colour: 16; 12; 2; 3
+
*4-colour: 16; 12; 2; 3; 1
*Total mobile pieces: 72
+
*Total pieces: 72 ''(80)''
 
*Total stickers: 216
 
*Total stickers: 216
  
 
Number of positions:<br>
 
Number of positions:<br>
(24! × 32!)/2 × (2^24)/2 × (6^32)/2 × 16!/2 × (12^16)/3 =<br>
+
(24! × 32!)/2 × 2<sup>24</sup>/2 × 6<sup>32</sup>/2 × 16!/2 × 12<sup>16</sup>/3 =<br>
= 1 756 772 880 709 135 843 168 526 079 081 025 059 614 484 630 149 557 651 477 156 021 733 236 798 970 168 550 600 274 887 650 082 354 207 129 600 000 000 000 000
+
= 1 756 772 880 709 135 843 168 526 079 081 025 059 614 484 630 149 557 651 477 156 021 733 236 798 970 168 550 600 274 887 650 082 354 207 129 600 000 000 000 000
 
≈<br>
 
≈<br>
≈ 1.76×10^120<br>
+
≈ 1.76 × 10<sup>120</sup><br>
1 noventrigintillion 757 octotrigintillion (short scale) / 1 vigintillion 757 novendecilliard (long scale)
+
1 noventrigintillion 757 octotrigintillion (short scale) / 1 vigintillion 757 novendecilliard (long scale)
  
 
=====Symmetry=====
 
=====Symmetry=====
  
 
Here are numbers of positions symmetric under some conjugacy class, using [http://http://www.gregegan.net/APPLETS/29/HypercubeNotes.html#CTAB Greg Egan’s notation]:
 
Here are numbers of positions symmetric under some conjugacy class, using [http://http://www.gregegan.net/APPLETS/29/HypercubeNotes.html#CTAB Greg Egan’s notation]:
*e: 1 756 772 880 709 135 843 168 526 079 081 025 059 614 484 630 149 557 651 477 156 021 733 236 798 970 168 550 600 274 887 650 082 354 207 129 600 000 000 000 000
+
*e: 1 756 772 880 709 135 843 168 526 079 081 025 059 614 484 630 149 557 651 477 156 021 733 236 798 970 168 550 600 274 887 650 082 354 207 129 600 000 000 000 000
*(1,−)^4: 11 497 557 803 313 571 701 881 319 062 903 855 825 682 866 660 890 902 528 000 000
+
*(1,−)<sup>4</sup>: 11 497 557 803 313 571 701 881 319 062 903 855 825 682 866 660 890 902 528 000 000
*(1,−)^2: 6 271 395 165 443 766 382 844 355 852 493 012 268 554 290 905 940 492 288 000 000
+
*(1,−)<sup>2</sup>: 6 271 395 165 443 766 382 844 355 852 493 012 268 554 290 905 940 492 288 000 000
*(2,+): 426 893 024 140 465 883 454 209 890 713 600
+
*(2,+): 426 893 024 140 465 883 454 209 890 713 600
*(1,−)^2(2,+): 71 148 837 356 744 313 909 034 981 785 600
+
*(1,−)<sup>2</sup>(2,+): 71 148 837 356 744 313 909 034 981 785 600
*(2,+)^2: 106 723 256 035 116 470 863 552 472 678 400
+
*(2,+)<sup>2</sup>: 106 723 256 035 116 470 863 552 472 678 400
*(2,−)^2: 149 318 932 510 565 866 258 198 948 868 881 244 489 387 878 712 868 864 000 000
+
*(2,−)<sup>2</sup>: 149 318 932 510 565 866 258 198 948 868 881 244 489 387 878 712 868 864 000 000
*(1,−)(2,−): 63 875 321 129 519 842 788 229 550 349 465 865 698 238 148 116 060 569 600 000
+
*(1,−)(2,−): 63 875 321 129 519 842 788 229 550 349 465 865 698 238 148 116 060 569 600 000
*(3,+): 1 237 680 706 117 919 967 859 807 513 199 071 199 232 000
+
*(3,+): 1 237 680 706 117 919 967 859 807 513 199 071 199 232 000
*(1,−)(3,−): 43 129 799 915 034 095 124 480
+
*(1,−)(3,−): 43 129 799 915 034 095 124 480
*(4,+): 230 844 665 274 826 752
+
*(4,+): 230 844 665 274 826 752
*(1,−): 1 856 873 273 785 608 466 117 989 769 149 838 721 779 822 477 836 435 975 045 120 000 000
+
*(1,−): 1 856 873 273 785 608 466 117 989 769 149 838 721 779 822 477 836 435 975 045 120 000 000
*(1,−)^3: 137 970 693 639 762 860 422 575 828 754 846 269 908 194 399 930 690 830 336 000 000
+
*(1,−)<sup>3</sup>: 137 970 693 639 762 860 422 575 828 754 846 269 908 194 399 930 690 830 336 000 000
*(2,−): 11 911 481 795 714 655 997 805 044 354 212 748 848 156 298 016 980 992 000 000
+
*(2,−): 11 911 481 795 714 655 997 805 044 354 212 748 848 156 298 016 980 992 000 000
*(1,−)^2(2,−): 34 492 673 409 940 715 105 643 957 188 711 567 477 048 599 982 672 707 584 000 000
+
*(1,−)<sup>2</sup>(2,−): 34 492 673 409 940 715 105 643 957 188 711 567 477 048 599 982 672 707 584 000 000
*(1,−)(2,+): 426 893 024 140 465 883 454 209 890 713 600
+
*(1,−)(2,+): 426 893 024 140 465 883 454 209 890 713 600
*(2,−)(2,+): 213 446 512 070 232 941 727 104 945 356 800
+
*(2,−)(2,+): 213 446 512 070 232 941 727 104 945 356 800
*(3,−): 32 347 349 936 275 571 343 360
+
*(3,−): 32 347 349 936 275 571 343 360
*(1,−)(3,+): 1 572 081 206 902 992 767 287 296
+
*(1,−)(3,+): 1 572 081 206 902 992 767 287 296
*(4,−): 1 280 679 072 421 397 650 362 629 672 140 800
+
*(4,−): 1 280 679 072 421 397 650 362 629 672 140 800
  
 
Dividing their sum by 384 (the total number of symmetries of the tesseract) gives us<br>
 
Dividing their sum by 384 (the total number of symmetries of the tesseract) gives us<br>
4 574 929 376 846 707 924 918 036 664 273 502 759 412 720 391 014 473 055 557 863 939 959 893 650 526 399 862 305 272 865 622 237 030 657 852 043 408 965 632 ≈<br>
+
4 574 929 376 846 707 924 918 036 664 273 502 759 412 720 391 014 473 055 557 863 939 959 893 650 526 399 862 305 272 865 622 237 030 657 852 043 408 965 632 ≈<br>
≈ 4.57×10^117<br>
+
≈ 4.57 × 10<sup>117</sup><br>
4 octotrigintillion 575 septentrigintillion (short scale) / 4 novendecilliard 575 novendecillion (long scale)<br>
+
4 octotrigintillion 575 septentrigintillion (short scale) / 4 novendecilliard 575 novendecillion (long scale)<br>
 
essentially different positions of this puzzle up to symmetry.
 
essentially different positions of this puzzle up to symmetry.
  
Line 171: Line 204:
  
 
The number of purely antisymmetric (without additional symmetry operations; self-inverse, order 2) positions of this puzzle is found to be equal to<br>
 
The number of purely antisymmetric (without additional symmetry operations; self-inverse, order 2) positions of this puzzle is found to be equal to<br>
1 514 851 187 547 945 564 174 052 809 349 480 746 221 364 817 706 402 235 357 461 479 424 ≈<br>
+
1 514 851 187 547 945 564 174 052 809 349 480 746 221 364 817 706 402 235 357 461 479 424 ≈<br>
≈ 1.51×10^66<br>
+
≈ 1.51 × 10<sup>66</sup><br>
1 unvigintillion 515 vigintillion (short scale) / 6 undecillion 515 decilliard (long scale).
+
1 unvigintillion 515 vigintillion (short scale) / 6 undecillion 515 decilliard (long scale).
  
For more details, see [[Mathematics/{4,3,3}]].
+
For more details, see [[Mathematics/{4,3,3}_3]].
  
 
====Length 4====
 
====Length 4====
  
*1-colour: 64; 1; 1; 1; 8!^8
+
*1-colour: Type 3: 64; 1; 1; 1; 8
*2-colour: 96; 2; 1; 2; 4!^24
+
*2-colour: Type 3: 96; 2; 1; 2; 4
*3-colour: 64; 3; 2; 3
+
*3-colour: Type 2: 64; 3; 2; 3; 1
*4-colour: 16; 12; 2; 3
+
*4-colour: 16; 12; 2; 3; 1
 
*Puzzle orientation constraint: 192
 
*Puzzle orientation constraint: 192
*Total mobile pieces: 240
+
*Total pieces: 240
 
*Total stickers: 512
 
*Total stickers: 512
  
 
Number of positions:<br>
 
Number of positions:<br>
(64!/(8!^8) × 96!/(4!^24) × (2^96)/2 × 64!/2 × (3^64)/3 × 16!/2 × (12^16)/3)/192 =<br>
+
(64!/(8!<sup>8</sup>) × 96!/(4!<sup>24</sup>) × 2<sup>96</sup>/2 × 64!/2 × 3<sup>64</sup>/3 × 16!/2 × 12<sup>16</sup>/3)/192 =<br>
= 130 465 639 524 605 309 368 634 620 044 528 122 859 025 488 438 611 959 323 482 221 544 701 493 566 589 669 139 598 204 956 926 940 147 059 366 252 849 247 482 898 636 104 705 417 194 760 866 897 307 590 845 202 461 293 100 468 293 214 262 958 591 194 739 437 727 430 945 469 384 490 361 714 647 847 550 801 897 750 293 894 453 665 815 572 829 257 758 907 425 128 919 808 862 616 259 604 997 210 112 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈<br>
+
= 130 465 639 524 605 309 368 634 620 044 528 122 859 025 488 438 611 959 323 482 221 544 701 493 566 589 669 139 598 204 956 926 940 147 059 366 252 849 247 482 898 636 104 705 417 194 760 866 897 307 590 845 202 461 293 100 468 293 214 262 958 591 194 739 437 727 430 945 469 384 490 361 714 647 847 550 801 897 750 293 894 453 665 815 572 829 257 758 907 425 128 919 808 862 616 259 604 997 210 112 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈<br>
≈ 1.30×10^344<br>
+
≈ 1.30 × 10<sup>344</sup><br>
130 tredecicentillion 466 duodecicentillion (short scale) / 130 septenquinquagintillion 466 sesquinquagintilliard (long scale)
+
130 tredecicentillion 466 duodecicentillion (short scale) / 130 septenquinquagintillion 466 sesquinquagintilliard (long scale)
  
 
====Length 5====
 
====Length 5====
  
*1-colour: 208 (216)
+
*1-colour: 208 ''(216)''
**(Type 0: 8)
+
**''(Type 0: 8)''
**Type 1A: 48; 1; 1; 1; 6!^8
+
**Type 1.1: 48; 1; 1; 1; 6
**Type 1Ba: 96; 1; 1; 1; 12!^8
+
**Type 2.1: 96; 1; 1; 1; 12
**Type 1Bb: 64; 1; 1; 1; 8!^8
+
**Type 3: 64; 1; 1; 1; 8
 
*2-colour: 216
 
*2-colour: 216
**Type 1: 24; 2; (2); 2
+
**Type 1: 24; 2; (2); 2; 1
**Type 2A: 96; 2; 1; 2; 4!^24
+
**Type 2.1: 96; 2; 1; 2; 4
**Type 2B: 96; 2; 1; 2; 4!^24
+
**Type 3: 96; 2; 1; 2; 4
 
*3-colour: 96
 
*3-colour: 96
**Type 1: 32; 6; (2); 2
+
**Type 1: 32; 6; (2); 2; 1
**Type 2: 64; 3; 2; 3
+
**Type 2: 64; 3; 2; 3; 1
*4-colour: 16; 12; 2; 3
+
*4-colour: 16; 12; 2; 3; 1
*Total mobile pieces: 536
+
*Total pieces: 536 ''(544)''
*Total stickers: 1000
+
*Total stickers: 1 000
  
 
Number of positions:<br>
 
Number of positions:<br>
48!/(6!^8) × 96!/(12!^8) × 64!/(8!^8) × (24! × 32!)/2 × (2^24)/2 × (6^32)/2 × (96!/(4!^24) × (2^96)/2)^2 × 64!/2 × (3^64)/3 × 16!/2 × (12^16)/3 =<br>
+
48!/(6!<sup>8</sup>) × 96!/(12!<sup>8</sup>) × 64!/(8!<sup>8</sup>) × (24! × 32!)/2 × 2<sup>24</sup>/2 × 6<sup>32</sup>/2 × (96!/(4!<sup>24</sup>) × 2<sup>96</sup>/2)<sup>2</sup> × 64!/2 × 3<sup>64</sup>/3 × 16!/2 × 12<sup>16</sup>/3 =<br>
= 123 657 056 923 899 002 698 227 805 778 387 808 933 769 666 084 597 331 170 345 244 675 638 825 481 620 700 008 237 306 084 142 730 598 637 705 860 008 300 844 182 287 747 674 018 136 874 315 751 080 178 664 887 107 264 876 848 935 590 538 625 767 958 284 656 419 396 560 246 923 935 065 962 447 405 384 165 866 873 326 263 467 921 778 683 862 961 389 770 831 926 039 889 601 733 193 275 112 578 283 448 018 613 526 925 847 925 558 456 540 351 327 099 176 534 335 451 141 045 209 002 537 535 755 031 468 961 150 691 008 214 712 492 137 716 092 251 416 854 303 972 448 469 954 444 917 129 644 451 683 375 275 906 483 623 456 408 625 743 663 232 956 462 751 569 098 735 992 247 230 927 473 597 130 714 467 427 915 529 825 001 467 413 803 400 014 037 257 220 682 520 596 555 932 663 885 324 005 539 599 667 276 944 926 310 400 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈<br>
+
= 123 657 056 923 899 002 698 227 805 778 387 808 933 769 666 084 597 331 170 345 244 675 638 825 481 620 700 008 237 306 084 142 730 598 637 705 860 008 300 844 182 287 747 674 018 136 874 315 751 080 178 664 887 107 264 876 848 935 590 538 625 767 958 284 656 419 396 560 246 923 935 065 962 447 405 384 165 866 873 326 263 467 921 778 683 862 961 389 770 831 926 039 889 601 733 193 275 112 578 283 448 018 613 526 925 847 925 558 456 540 351 327 099 176 534 335 451 141 045 209 002 537 535 755 031 468 961 150 691 008 214 712 492 137 716 092 251 416 854 303 972 448 469 954 444 917 129 644 451 683 375 275 906 483 623 456 408 625 743 663 232 956 462 751 569 098 735 992 247 230 927 473 597 130 714 467 427 915 529 825 001 467 413 803 400 014 037 257 220 682 520 596 555 932 663 885 324 005 539 599 667 276 944 926 310 400 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈<br>
≈ 1.24×10^701<br>
+
≈ 1.24 × 10<sup>701</sup><br>
123 duotrigintaducentillion 657 untrigintaducentillion (short scale) / 123 sedecicentilliard 657 sedecicentillion (long scale)
+
123 duotrigintaducentillion 657 untrigintaducentillion (short scale) / 123 sedecicentilliard 657 sedecicentillion (long scale)
  
 
====Length 6====
 
====Length 6====
  
 
*1-colour: 512
 
*1-colour: 512
**Type 1: 64; 1; 1; 1; 8!^8
+
**Type 3<sub>1</sub>: 64; 1; 1; 1; 8
**Type 2A: 192; 1; 1; 1; 24!^8
+
**Type 1.3: 192; 1; 1; 1; 24
**Type 2Ba: 192; 1; 1; 1; 24!^8
+
**Type 2.2: 192; 1; 1; 1; 24
**Type 2Bb: 64; 1; 1; 1; 8!^8
+
**Type 3<sub>2</sub>: 64; 1; 1; 1; 8
 
*2-colour: 384
 
*2-colour: 384
**Type 1: 96; 2; 1; 2; 4!^24
+
**Type 3<sub>1</sub>: 96; 2; 1; 2; 4
**Type 2A: 192; 2; 1; 2; 8!^24
+
**Type 2.2: 192; 1; 1; 1; 4
**Type 2B: 96; 2; 1; 2; 4!^24
+
**Type 3<sub>2</sub>: 96; 2; 1; 2; 4
 
*3-colour: 128
 
*3-colour: 128
**Type 1: 64; 3; 2; 3
+
**Type 2<sub>1</sub>: 64; 3; 2; 3; 1
**Type 2: 64; 3; 2; 3
+
**Type 2<sub>2</sub>: 64; 3; 2; 3; 1
*4-colour 16; 12; 2; 3
+
*4-colour 16; 12; 2; 3; 1
 
*Puzzle orientation constraint: 192
 
*Puzzle orientation constraint: 192
*Total mobile pieces: 1040
+
*Total pieces: 1 040
*Total stickers: 1728
+
*Total stickers: 1 728
  
 
Number of positions:<br>
 
Number of positions:<br>
((64!/(8!^8))^2 × (192!/(24!^8))^2 × (96!/(4!^24) × (2^96)/2)^2 × 192!/(24!^8) × 2^192 × (64!/2 × (3^64)/3)^2 × 16!/2 × (12^16)/3)/192 =<br>
+
((64!/(8!<sup>8</sup>))<sup>2</sup> × (192!/(24!<sup>8</sup>))<sup>2</sup> × (96!/(4!<sup>24</sup>) × 2<sup>96</sup>/2)<sup>2</sup> × 192!/(4!<sup>48</sup>) × (64!/2 × 3<sup>64</sup>/3)<sup>2</sup> × 16!/2 × 12<sup>16</sup>/3)/192 =
= 4 330 563 586 781 524 771 753 221 225 538 402 895 653 388 384 512 732 580 964 855 890 366 682 053 812 694 249 885 251 815 291 282 459 189 648 971 632 660 257 088 554 076 996 985 058 715 088 036 992 192 728 975 917 814 718 029 299 052 083 846 038 648 754 825 049 995 663 272 249 254 128 117 192 731 901 634 400 308 947 476 030 539 549 978 320 057 004 945 663 595 047 113 628 963 904 290 898 903 827 146 814 392 616 906 490 655 289 199 893 119 261 891 206 161 900 906 257 483 955 915 710 224 366 923 373 245 271 718 733 079 279 765 899 738 315 643 452 777 113 421 178 368 067 350 615 865 043 174 293 537 175 058 193 468 860 436 495 299 974 819 750 245 204 191 457 021 371 616 500 111 770 611 406 679 134 450 672 458 586 190 379 569 036 167 736 875 335 003 539 441 335 137 258 422 220 372 546 747 114 002 551 126 680 815 988 245 824 985 433 407 088 692 697 333 561 262 003 577 523 082 417 655 617 950 186 228 379 563 306 510 562 816 109 381 188 782 556 022 182 951 264 812 583 181 338 476 758 843 656 815 450 582 577 953 344 774 452 140 231 512 418 155 651 907 136 814 773 135 453 283 225 784 924 643 619 592 218 809 435 178 694 962 677 052 687 103 134 823 206 815 491 915 961 670 677 118 240 910 078 761 237 466 908 849 289 680 931 298 048 694 186 676 188 140 069 600 568 474 994 332 865 234 729 589 265 917 305 767 727 982 276 258 846 202 979 725 332 236 033 627 934 977 999 457 218 799 923 734 902 706 512 208 406 549 078 005 906 541 138 275 332 514 367 170 021 753 614 862 178 186 282 726 864 469 846 272 572 675 589 510 222 452 910 044 531 916 800 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈<br>
+
<div class="mw-collapsible mw-collapsed">= 264 343 239 763 132 077 850 013 455 367 395 882 069 920 764 915 176 617 615 896 425 604 772 617 395 476 791 807 544 912 068 783 367 475 497 344 654 390 039 776 935 146 828 007 877 209 739 947 496 200 882 251 028 332 070 620 913 612 639 733 391 972 191 751 218 779 811 162 066 518 418 201 513 821 485 710 066 286 540 019 140 424 063 030 142 936 036 321 499 646 671 243 887 366 080 149 129 230 864 249 214 953 560 727 310 608 535 010 878 238 067 105 196 327 152 354 429 432 836 414 524 842 789 077 645 718 497 864 065 495 084 777 042 842 106 208 814 023 889 636 223 629 649 340 258 460 204 011 573 261 046 609 429 272 815 062 265 751 111 517 606 111 386 336 255 702 904 031 761 468 974 695 035 855 720 674 341 943 075 232 301 615 186 780 244 877 627 636 656 662 880 847 271 909 266 695 178 066 551 573 653 273 656 191 278 274 400 264 629 192 327 790 087 339 756 840 244 595 372 493 068 160 933 347 403 460 516 249 919 512 801 527 899 598 183 985 061 719 198 130 661 759 846 845 219 262 981 268 014 709 340 065 053 682 003 285 704 097 595 491 771 953 711 455 313 876 759 694 875 560 916 828 660 454 277 446 783 240 905 233 418 763 999 006 650 547 668 970 875 237 069 476 801 538 062 963 879 896 717 136 381 033 961 945 031 366 394 941 725 708 248 736 390 551 997 180 317 157 379 215 039 227 670 778 812 154 285 466 911 957 373 591 754 065 087 207 314 000 103 891 688 829 357 492 770 928 907 438 925 806 912 248 892 452 824 237 313 989 962 030 484 325 621 500 268 813 883 016 808 053 489 555 577 241 600 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈</div>
4.33×10^1296<br>
+
2.64 × 10<sup>1 283</sup><br>
4 untrigintaquadringentillion 331 trigintaquadringentillion (short scale) / 4 sedeciducentillion 331 quinquadeciducentilliard (long scale)
+
264 sesvigintiquadringentillion 343 quinquavigintiquadringentillion (short scale) / 264 tredeciducentilliard 343 tredeciducentillion (long scale)
  
 
====Length 7====
 
====Length 7====
  
*1-colour: 992 (1000)
+
*1-colour: 992 ''(1 000)''
**(Type 0: 8)
+
**''(Type 0: 8)''
**Type 1A: 48; 1; 1; 1; 6!^8
+
**Type 1.1<sub>1</sub>: 48; 1; 1; 1; 6
**Type 1Ba: 96; 1; 1; 1; 12!^8
+
**Type 2.1<sub>1</sub>: 96; 1; 1; 1; 12
**Type 1Bb: 64; 1; 1; 1; 8!^8
+
**Type 3<sub>1</sub>: 64; 1; 1; 1; 8
**Type 2A: 48; 1; 1; 1; 6!^8
+
**Type 1.1<sub>2</sub>: 48; 1; 1; 1; 6
**Type 2Ba: 192; 1; 1; 1; 24!^8
+
**Type 1.2.1: 192; 1; 1; 1; 24
**Type 2Bb: 192; 1; 1; 1; 24!^8
+
**Type 1.3: 192; 1; 1; 1; 24
**Type 2Ca: 96; 1; 1; 1; 12!^8
+
**Type 2.1<sub>2</sub>: 96; 1; 1; 1; 12
**Type 2Cb: 192; 1; 1; 1; 24!^8
+
**Type 2.2: 192; 1; 1; 1; 24
**Type 2Cc: 64; 1; 1; 1; 8!^8
+
**Type 3<sub>2</sub>: 64; 1; 1; 1; 8
 
*2-colour: 600
 
*2-colour: 600
**Type 1: 24; 2; (2); 2
+
**Type 1: 24; 2; (2); 2; 1
**Type 2A: 96; 2; 1; 2; 4!^24
+
**Type 2.1<sub>1</sub>: 96; 2; 1; 2; 4
**Type 2B: 96; 2; 1; 2; 4!^24
+
**Type 3<sub>1</sub>: 96; 2; 1; 2; 4
**Type 3A: 96; 2; 1; 2; 4!^24
+
**Type 2.1<sub>2</sub>: 96; 2; 1; 2; 4
**Type 3B: 192; 2; 1; 2; 8!^24
+
**Type 2.2: 192; 1; 1; 1; 4
**Type 3C: 96; 2; 1; 2; 4!^24
+
**Type 3<sub>2</sub>: 96; 2; 1; 2; 4
 
*3-colour: 160
 
*3-colour: 160
**Type 1: 32; 6; (2); 2
+
**Type 1: 32; 6; (2); 2; 1
**Type 2: 64; 3; 2; 3
+
**Type 2<sub>1</sub>: 64; 3; 2; 3; 1
**Type 3: 64; 3; 2; 3
+
**Type 2<sub>2</sub>: 64; 3; 2; 3; 1
*4-colour: 16; 12; 2; 3
+
*4-colour: 16; 12; 2; 3; 1
*Total mobile pieces: 1768
+
*Total pieces: 1 768 ''(1 776)''
*Total stickers: 2744
+
*Total stickers: 2 744
  
 
Number of positions:<br>
 
Number of positions:<br>
(48!/(6!^8))^2 × (96!/(12!^8))^2 × (64!/(8!^8))^2 × (192!/(24!^8))^3 × (24! × 32!)/2 × (2^24)/2 × (6^32)/2 × (96!/(4!^24) × (2^96)/2)^4 × 192!/(8!^24) × (2^192)/2 × (64!/2 × (3^64)/3)^2 × 16!/2 × (12^16)/3 =<br>
+
(48!/(6!<sup>8</sup>))<sup>2</sup> × (96!/(12!<sup>8</sup>))<sup>2</sup> × (64!/(8!<sup>8</sup>))<sup>2</sup> × (192!/(24!<sup>8</sup>))<sup>3</sup> × (24! × 32!)/2 × 2<sup>24</sup>/2 × 6<sup>32</sup>/2 × (96!/(4!<sup>24</sup>) × 2<sup>96</sup>/2)<sup>4</sup> × 192!/(4!<sup>48</sup>) × (64!/2 × 3<sup>64</sup>/3)<sup>2</sup> × 16!/2 × 12<sup>16</sup>/3 =
= 120 204 420 262 829 797 162 433 788 919 585 455 757 204 805 471 800 349 179 170 259 140 241 084 037 126 862 235 334 757 004 155 458 806 899 430 992 342 308 808 995 176 512 130 635 779 825 935 530 398 806 387 940 433 384 505 189 091 725 286 236 191 252 318 683 414 214 787 470 502 609 610 517 282 849 855 626 585 956 033 459 665 523 049 390 647 991 775 586 700 657 741 349 643 597 253 242 616 624 817 277 542 197 445 002 087 552 822 043 265 955 990 515 717 639 936 270 166 304 619 581 025 290 323 597 571 358 759 174 290 461 782 064 624 612 055 601 144 214 294 228 786 967 379 542 444 011 455 701 652 062 905 728 494 743 529 666 464 877 593 555 610 305 818 629 355 758 752 510 639 383 756 741 327 547 512 086 292 498 955 661 005 792 054 480 736 079 010 227 809 116 951 027 221 904 223 055 707 648 314 052 055 477 421 906 905 289 505 370 361 120 147 122 173 579 103 416 507 661 748 018 695 784 564 799 352 956 393 190 079 203 036 419 189 948 248 477 878 049 622 771 456 379 023 414 067 102 043 661 614 635 607 834 761 191 465 168 363 350 168 674 013 400 450 115 957 116 152 351 707 757 447 051 290 408 418 185 671 839 886 399 403 181 603 633 061 426 419 690 487 267 117 919 459 677 797 784 911 222 398 435 900 117 426 919 421 024 706 608 858 996 402 208 516 057 084 322 625 811 549 693 944 605 404 438 543 784 212 751 100 229 464 403 751 680 650 480 940 153 700 025 567 728 438 079 548 898 782 769 129 950 148 465 515 885 995 611 511 631 608 074 802 316 156 887 221 829 931 050 520 296 403 051 243 790 768 240 970 019 554 523 795 346 801 637 621 576 218 289 232 316 961 943 149 681 473 200 551 321 603 075 487 657 751 232 622 559 464 294 599 320 283 967 704 302 870 691 764 899 327 706 273 156 736 470 358 347 648 904 903 142 233 794 512 726 116 109 151 832 357 567 239 146 375 565 492 114 510 643 603 512 414 850 178 450 805 385 551 320 188 193 586 448 762 466 992 548 202 016 870 057 740 388 571 969 940 150 609 666 211 877 013 629 528 042 973 697 119 635 627 710 214 720 949 176 473 675 120 739 414 599 671 229 234 422 489 806 227 168 015 622 648 468 200 892 625 010 634 255 390 021 079 648 947 768 836 693 491 025 320 641 635 329 586 697 630 429 400 325 405 252 766 348 724 199 577 647 165 752 375 360 727 626 753 528 177 284 870 630 326 269 441 828 106 175 020 545 861 506 382 637 439 043 253 401 709 360 991 008 939 122 977 258 825 091 947 860 006 122 086 682 980 739 561 226 686 391 673 347 813 637 808 731 491 824 948 407 728 384 094 391 223 980 156 720 291 239 702 453 813 248 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈<br>
+
<div class="mw-collapsible mw-collapsed">= 7 337 434 319 892 034 996 539 696 541 015 901 415 176 457 460 392 528 463 625 581 457 640 190 365 116 823 390 530 468 023 715 626 526 604 429 606 969 805 616 601 628 970 051 880 888 221 134 913 733 165 242 077 154 984 281 530 898 689 210 269 679 941 460 759 042 817 683 844 933 089 851 453 698 786 864 794 509 863 349 741 970 302 551 602 027 225 039 347 843 681 705 446 657 258 545 461 739 566 813 908 631 336 581 590 420 532 625 083 295 176 663 101 780 841 177 664 939 331 096 229 452 451 761 341 509 712 179 348 271 654 146 635 232 206 207 257 145 217 543 018 207 256 806 903 111 979 941 166 140 911 102 180 432 245 784 317 454 583 918 904 739 384 594 483 197 623 183 376 642 997 335 334 478 805 426 209 502 639 545 897 480 783 647 870 916 254 696 882 917 264 073 532 728 057 276 929 238 687 121 003 677 882 434 826 433 768 137 084 883 560 942 881 754 713 988 411 137 695 657 827 755 581 220 475 341 892 350 700 315 863 584 019 320 116 799 474 271 941 770 640 430 497 091 924 893 647 932 769 111 387 023 164 496 140 365 705 162 073 522 805 447 981 437 237 060 797 325 911 512 333 632 245 324 294 571 094 828 861 153 948 146 642 421 067 494 918 560 280 584 263 583 974 933 262 660 188 923 205 830 916 147 294 131 550 057 497 975 713 597 841 005 820 756 860 142 542 552 272 136 473 538 143 935 027 919 465 169 944 302 762 294 980 523 719 862 246 174 774 873 985 636 528 613 875 824 567 333 274 247 166 660 065 136 263 780 641 061 489 712 950 208 711 944 880 176 558 443 555 260 816 530 945 232 318 977 598 718 253 880 188 102 252 310 950 057 168 527 143 193 434 346 902 155 597 905 349 847 003 282 215 417 962 790 632 702 486 685 454 347 658 908 629 068 736 261 539 454 839 276 588 212 572 015 509 557 565 832 068 644 402 147 424 507 190 806 802 318 401 494 966 290 208 967 366 739 850 738 305 982 026 207 363 516 060 988 262 550 558 510 071 563 675 994 172 714 090 959 554 252 546 549 736 444 404 418 528 297 665 812 213 337 994 772 824 176 931 199 518 923 651 112 811 989 192 488 892 331 387 807 234 610 522 563 432 772 967 036 846 700 100 926 382 558 858 400 930 752 481 663 448 427 943 140 312 222 916 020 055 739 864 957 842 450 041 652 916 128 937 513 204 716 260 395 278 790 457 482 646 797 357 391 185 125 968 701 385 369 075 149 622 931 701 434 104 886 292 221 266 238 962 342 058 411 451 381 092 046 248 013 448 852 753 164 740 383 183 670 573 734 756 917 231 004 019 687 082 631 664 153 921 434 344 437 975 032 713 445 376 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈</div>
1.20×10^2084<br>
+
7.34 × 10<sup>2 070</sup><br>
120 trenonagintasescentillion 204 duononagintasescentillion (short scale) / 120 septenquadragintatrecentillion 204 sesquadragintatrecentilliard (long scale)
+
7 novemoctogintasescentillion 337 octooctogintasescentillion (short scale) / 7 quinquaquadragintatrecentillion 337 quattuorquadragintatrecentilliard (long scale)
  
 
====Length 8====
 
====Length 8====
  
*1-colour: 1728
+
*1-colour: 1 728
**Type 1: 64; 1; 1; 1; 8!^8
+
**Type 3<sub>1</sub>: 64; 1; 1; 1; 8
**Type 2A: 192; 1; 1; 1; 24!^8
+
**Type 1.3<sub>1</sub>: 192; 1; 1; 1; 24
**Type 2Ba: 192; 1; 1; 1; 24!^8
+
**Type 2.2<sub>1</sub>: 192; 1; 1; 1; 24
**Type 2Bb: 64; 1; 1; 1; 8!^8
+
**Type 3<sub>2</sub>: 64; 1; 1; 1; 8
**Type 3A: 192; 1; 1; 1; 24!^8
+
**Type 1.3<sub>2</sub>: 192; 1; 1; 1; 24
**Type 3Ba: 384; 1; 1; 1; 48!^8
+
**Type 1.2.2<sub>1</sub>: 192; 1; 1; 1; 24
**Type 3Bb: 192; 1; 1; 1; 24!^8
+
**Type 1.2.2<sub>2</sub>: 192; 1; 1; 1; 24
**Type 3Ca: 192; 1; 1; 1; 24!^8
+
**Type 1.3<sub>3</sub>: 192; 1; 1; 1; 24
**Type 3Cb: 192; 1; 1; 1; 24!^8
+
**Type 2.2<sub>2</sub>: 192; 1; 1; 1; 24
**Type 3Cc: 64; 1; 1; 1; 8!^8
+
**Type 2.2<sub>3</sub>: 192; 1; 1; 1; 24
 +
**Type 3<sub>3</sub>: 64; 1; 1; 1; 8
 
*2-colour: 864
 
*2-colour: 864
**Type 1: 96; 2; 1; 2; 4!^24
+
**Type 3<sub>1</sub>: 96; 2; 1; 2; 4
**Type 2A: 192; 2; 1; 2; 8!^24
+
**Type 2.2<sub>1</sub>: 192; 1; 1; 1; 4
**Type 2B: 96; 2; 1; 2; 4!^24
+
**Type 3<sub>2</sub>: 96; 2; 1; 2; 4
**Type 3A: 192; 2; 1; 2; 8!^24
+
**Type 2.2<sub>2</sub>: 192; 1; 1; 1; 4
**Type 3B: 192; 2; 1; 2; 8!^24
+
**Type 2.2<sub>3</sub>: 192; 1; 1; 1; 4
**Type 3C: 96; 2; 1; 2; 4!^24
+
**Type 3<sub>3</sub>: 96; 2; 1; 2; 4
 
*3-colour: 192
 
*3-colour: 192
**Type 1: 64; 3; 2; 3
+
**Type 2<sub>1</sub>: 64; 3; 2; 3; 1
**Type 2: 64; 3; 2; 3
+
**Type 2<sub>2</sub>: 64; 3; 2; 3; 1
**Type 3: 64; 3; 2; 3
+
**Type 2<sub>3</sub>: 64; 3; 2; 3; 1
*4-colour: 16; 12; 2; 3
+
*4-colour: 16; 12; 2; 3; 1
 
*Puzzle orientation constraint: 192
 
*Puzzle orientation constraint: 192
*Total mobile pieces: 2800
+
*Total pieces: 2 800
*Total stickers: 4096
+
*Total stickers: 4 096
  
 
Number of positions:<br>
 
Number of positions:<br>
((64!/(8!^8))^3 × (192!/(24!^8))^5 × 384!/(48!^8) × (96!/(4!^24) × (2^96)/2)^3 × (192!/(8!^24) × (2^192)/2)^3 × (64!/2)^3 × ((3^64)/3)^3 × 16!/2 × (12^16)/3)/192 =<br>
+
((64!/(8!<sup>8</sup>))<sup>3</sup> × (192!/(24!<sup>8</sup>))<sup>8</sup> × (96!/(4!<sup>24</sup>) × 2<sup>96</sup>/2)<sup>3</sup> × (192!/(4!<sup>48</sup>))<sup>3</sup> × (64!/2 × 3<sup>64</sup>/3)<sup>3</sup> × 16!/2 × 12<sup>16</sup>/3)/192 =
= 2 721 581 823 080 873 052 859 657 844 142 014 134 015 658 403 678 494 295 364 865 414 829 788 995 830 454 165 128 239 497 743 501 201 101 594 431 668 779 730 953 156 729 631 579 937 971 719 056 751 144 401 352 961 570 367 304 955 773 354 070 352 438 779 264 240 874 518 343 498 698 109 108 071 550 490 239 249 369 299 779 425 733 239 725 882 216 107 369 817 932 322 734 919 453 500 268 860 563 607 119 758 967 852 177 439 306 546 586 704 562 888 044 269 567 455 128 918 682 222 002 990 492 082 331 472 916 603 942 065 542 310 359 514 016 236 954 391 659 683 606 457 748 064 297 708 757 514 219 352 850 969 091 827 919 644 440 920 100 105 068 708 379 140 500 474 324 190 706 764 162 803 024 206 607 547 576 137 245 621 532 878 521 415 636 519 361 472 025 540 560 621 965 578 403 361 089 606 752 419 683 485 105 247 191 293 769 994 013 775 891 523 566 093 685 242 790 304 855 558 043 285 651 052 444 928 975 835 213 649 345 749 772 692 523 491 296 371 617 220 672 464 524 735 868 482 287 471 366 996 437 163 771 142 347 067 997 144 590 276 890 459 798 601 555 369 492 373 757 240 383 940 146 560 615 580 308 437 660 368 129 779 651 604 683 772 170 228 191 643 855 422 475 634 102 541 463 937 701 345 517 916 041 666 146 427 274 478 848 175 138 731 787 259 015 144 862 351 409 681 116 878 374 857 920 519 299 361 150 730 306 175 799 626 394 739 470 181 222 619 561 526 552 062 480 425 479 046 565 472 457 218 276 858 261 229 363 508 486 532 218 072 521 655 635 799 226 729 127 256 273 871 147 861 479 580 568 919 256 509 899 397 580 761 316 499 643 509 071 715 498 565 100 821 044 085 755 263 076 790 306 322 739 772 795 272 530 600 430 061 324 907 786 186 720 689 379 252 904 602 234 870 779 261 219 313 675 470 095 759 903 775 149 605 927 858 536 465 393 281 829 122 279 014 997 040 033 995 794 965 221 939 364 014 873 890 559 311 256 609 963 621 251 390 692 205 375 851 820 846 920 367 319 017 156 776 441 154 845 968 832 373 847 534 855 109 913 104 569 716 217 279 807 860 602 795 780 554 520 459 609 699 938 724 223 660 713 949 038 974 976 745 149 188 061 902 861 568 698 115 784 364 684 946 154 710 382 794 352 073 679 769 326 849 308 872 400 227 894 557 336 755 497 557 394 411 839 017 324 802 740 655 275 318 335 035 292 904 821 514 083 627 084 358 203 665 924 789 215 733 105 400 999 682 824 463 527 159 968 274 643 049 727 497 634 527 660 511 796 626 474 114 863 866 103 492 676 623 482 861 459 788 001 638 794 964 748 043 780 518 381 236 055 493 149 699 159 448 035 950 269 712 347 881 705 892 922 519 418 840 453 633 134 579 855 706 443 565 857 328 371 447 075 522 864 543 635 187 455 011 611 760 065 956 973 645 704 440 092 639 429 973 621 238 034 854 115 014 636 291 924 564 143 167 508 485 141 817 204 330 539 409 885 398 144 379 068 761 137 360 537 031 241 990 259 288 449 874 949 069 064 103 319 717 457 440 819 478 738 975 025 648 107 081 924 347 619 557 153 129 980 495 268 525 720 509 031 511 680 852 433 550 828 341 074 384 869 248 370 046 989 275 320 615 723 095 914 501 628 975 295 527 450 877 777 440 712 016 521 092 974 806 473 928 849 523 186 344 703 225 141 596 447 790 800 176 278 637 020 278 394 278 694 626 509 750 465 781 544 612 404 393 605 567 806 276 095 473 698 660 070 105 647 847 424 739 951 272 855 114 900 415 140 158 269 690 881 260 962 836 750 832 971 075 479 901 249 985 839 740 137 119 149 041 557 802 309 956 919 999 637 643 463 145 545 665 040 664 840 208 557 009 630 517 513 874 079 938 964 009 424 310 837 644 840 596 915 481 244 071 134 176 090 303 414 256 274 518 042 384 682 848 681 814 331 807 171 862 476 912 826 536 666 748 876 636 579 342 316 890 251 860 785 707 404 727 303 341 925 008 580 879 859 726 078 054 020 520 677 926 943 734 937 847 611 785 216 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈<br>
+
<div class="mw-collapsible mw-collapsed">= 7 298 630 393 778 844 864 568 143 383 459 726 053 461 517 774 383 941 838 302 771 885 483 162 536 899 931 862 470 902 072 314 562 194 252 134 037 642 407 021 100 459 078 625 113 642 986 993 514 762 533 946 969 692 633 126 836 728 330 705 573 617 685 406 236 054 600 275 288 785 731 346 196 004 099 611 924 222 355 536 072 087 294 231 412 633 967 881 261 904 471 628 555 164 213 443 042 841 893 402 629 838 414 619 258 775 019 893 293 373 143 281 125 659 746 117 418 207 442 055 899 722 176 992 655 714 064 016 290 068 289 014 378 331 224 424 969 527 782 053 540 566 763 939 404 124 943 456 850 749 478 341 695 351 714 092 805 375 184 574 745 680 685 298 734 793 184 719 699 943 735 122 167 052 230 235 674 369 665 179 220 355 936 535 653 731 110 528 074 074 546 162 936 063 748 033 807 452 347 455 124 795 446 961 600 754 593 022 098 492 662 955 642 469 391 481 238 837 959 210 761 899 978 770 290 296 801 644 454 560 082 410 921 166 893 038 056 195 523 413 960 198 410 344 686 586 684 624 065 887 820 038 699 834 456 569 922 500 242 570 373 142 895 165 062 471 677 780 871 062 088 409 660 616 835 527 866 285 407 824 033 087 947 308 494 344 494 700 284 965 440 667 872 171 495 421 767 623 956 018 746 532 879 493 431 521 168 551 239 660 996 022 625 850 089 268 029 803 564 936 471 111 234 347 862 328 001 619 195 393 031 516 400 043 725 588 952 621 261 295 819 460 335 091 281 605 006 700 578 686 487 951 015 392 162 852 331 029 848 895 977 142 694 978 929 940 872 031 626 839 716 602 262 012 567 111 725 111 893 651 893 044 020 524 951 637 388 362 524 572 241 332 171 388 700 226 043 987 276 530 717 339 783 327 708 686 818 786 197 821 222 053 878 024 731 535 101 330 204 417 754 977 769 361 043 300 405 183 131 827 025 692 842 925 443 608 717 786 733 452 999 531 561 995 138 592 101 652 469 134 223 061 234 148 651 810 016 863 363 047 918 141 097 024 064 717 367 576 379 019 936 433 717 731 204 436 268 994 408 138 969 015 071 207 699 558 432 441 584 050 968 221 336 280 911 179 299 615 222 218 033 782 479 836 195 550 921 857 733 482 611 338 451 476 001 099 164 392 930 521 170 191 989 430 101 534 685 011 182 710 822 493 143 493 698 900 440 643 589 938 962 565 413 915 018 161 968 300 779 556 733 438 500 105 806 046 132 576 621 919 949 521 929 097 228 678 770 907 361 994 371 281 976 040 612 598 383 750 542 609 643 578 838 937 959 173 433 717 022 492 344 799 879 354 622 647 759 592 030 329 586 565 544 061 633 738 219 776 252 761 434 837 021 418 627 786 709 506 119 169 117 871 727 031 692 575 386 868 033 844 637 732 479 609 575 982 743 552 913 093 742 030 893 796 527 925 339 227 540 558 921 106 770 658 160 718 595 432 957 658 775 830 303 347 441 047 130 290 642 365 176 467 960 714 728 587 927 477 533 121 314 943 977 022 190 582 658 866 210 482 086 082 281 418 341 788 274 139 083 442 568 066 763 601 235 985 308 905 738 445 270 123 336 281 216 866 035 733 843 667 267 957 185 724 294 324 479 441 528 572 162 634 575 683 887 228 062 398 779 459 839 033 308 255 091 932 978 551 034 724 674 648 072 187 190 228 415 860 837 277 675 867 940 520 208 774 839 397 163 523 846 866 756 081 410 351 981 004 798 225 931 987 133 110 550 696 181 663 946 357 418 920 950 627 747 721 643 158 298 281 661 395 395 426 614 178 024 899 125 536 741 503 553 329 818 288 113 241 825 430 644 120 743 756 884 555 825 081 422 463 838 988 708 755 681 381 717 178 836 967 905 281 673 896 256 468 006 304 848 551 523 093 474 582 537 387 623 558 344 338 437 942 654 620 498 618 937 632 382 876 776 792 539 467 650 612 024 943 370 901 794 850 517 434 839 993 846 417 657 833 934 734 412 220 745 855 109 756 544 001 222 740 535 565 068 504 807 347 869 744 103 238 464 432 948 726 233 283 470 170 954 524 553 504 398 118 498 325 203 800 254 872 289 280 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈</div>
2.72×10^3057<br>
+
7.30 × 10<sup>3 177</sup><br>
2 millioctodecillion 722 milliseptendecillion (short scale) / 2 novenquingentilliard 722 novenquingentillion (long scale)
+
7 millioctoquinquagintillion 299 milliseptenquinquagintillion (short scale) / 7 novemvigintiquingentilliard 299 novemvigintiquingentillion (long scale)
  
 
====Length 9====
 
====Length 9====
*1-colour: 2736 (2744)
+
*1-colour: 2 736 ''(2 744)''
**(Type 0: 8)
+
**''(Type 0: 8)''
**Type 1A: 48; 1; 1; 1; 6!^8
+
**Type 1.1<sub>1</sub>: 48; 1; 1; 1; 6
**Type 1Ba: 96; 1; 1; 1; 12!^8
+
**Type 2.1<sub>1</sub>: 96; 1; 1; 1; 12
**Type 1Bb: 64; 1; 1; 1; 8!^8
+
**Type 3<sub>1</sub>: 64; 1; 1; 1; 8
**Type 2A: 48; 1; 1; 1; 6!^8
+
**Type 1.1<sub>2</sub>: 48; 1; 1; 1; 6
**Type 2Ba: 192; 1; 1; 1; 24!^8
+
**Type 1.2.1<sub>1</sub>: 192; 1; 1; 1; 24
**Type 2Bb: 192; 1; 1; 1; 24!^8
+
**Type 1.3<sub>1</sub>: 192; 1; 1; 1; 24
**Type 2Ca: 96; 1; 1; 1; 12!^8
+
**Type 2.1<sub>2</sub>: 96; 1; 1; 1; 12
**Type 2Cb: 192; 1; 1; 1; 24!^8
+
**Type 2.2<sub>1</sub>: 192; 1; 1; 1; 24
**Type 2Cc: 64; 1; 1; 1; 6!^8
+
**Type 3<sub>2</sub>: 64; 1; 1; 1; 6
**Type 3A: 48; 1; 1; 1; 6!^8
+
**Type 1.1<sub>3</sub>: 48; 1; 1; 1; 6
**Type 3Ba: 192; 1; 1; 1; 24!^8
+
**Type 1.2.1<sub>2</sub>: 192; 1; 1; 1; 24
**Type 3Bb: 192; 1; 1; 1; 24!^8
+
**Type 1.3<sub>2</sub>: 192; 1; 1; 1; 24
**Type 3Ca: 192; 1; 1; 1; 24!^8
+
**Type 1.2.1<sub>3</sub>: 192; 1; 1; 1; 24
**Type 3Cb: 384; 1; 1; 1; 48!^8
+
**Type 1.2.2<sub>1</sub>: 192; 1; 1; 1; 24
**Type 3Cc: 192; 1; 1; 1; 24!^8
+
**Type 1.2.2<sub>2</sub>: 192; 1; 1; 1; 24
**Type 3Da: 96; 1; 1; 1; 12!^8
+
**Type 1.3<sub>3</sub>: 192; 1; 1; 1; 24
**Type 3Db: 192; 1; 1; 1; 24!^8
+
**Type 2.1<sub>3</sub>: 96; 1; 1; 1; 12
**Type 3Dc: 192; 1; 1; 1; 24!^8
+
**Type 2.2<sub>2</sub>: 192; 1; 1; 1; 24
**Type 3Dd: 64; 1; 1; 1; 8!^8
+
**Type 2.2<sub>3</sub>: 192; 1; 1; 1; 24
*2-colour: 1176
+
**Type 3<sub>3</sub>: 64; 1; 1; 1; 8
**Type 1: 24; 2; (2); 2
+
*2-colour: 1 176
**Type 2A: 96; 2; 1; 2; 4!^24
+
**Type 1: 24; 2; (2); 2; 1
**Type 2B: 96; 2; 1; 2; 4!^24
+
**Type 2.1<sub>1</sub>: 96; 2; 1; 2; 4
**Type 3A: 96; 2; 1; 2; 4!^24
+
**Type 3<sub>1</sub>: 96; 2; 1; 2; 4
**Type 3B: 192; 2; 1; 2; 8!^24
+
**Type 2.1<sub>2</sub>: 96; 2; 1; 2; 4
**Type 3C: 96; 2; 1; 2; 4!^24
+
**Type 2.2<sub>1</sub>: 192; 2; 1; 2; 4
**Type 4A: 96; 2; 1; 2; 4!^24
+
**Type 3<sub>2</sub>: 96; 2; 1; 2; 4
**Type 4B: 192; 2; 1; 2; 8!^24
+
**Type 2.1<sub>3</sub>: 96; 2; 1; 2; 4
**Type 4C: 192; 2; 1; 2; 8!^24
+
**Type 2.2<sub>2</sub>: 192; 2; 1; 2; 4
**Type 4D: 96; 2; 1; 2; 4!^24
+
**Type 2.2<sub>3</sub>: 192; 2; 1; 2; 4
 +
**Type 3<sub>3</sub>: 96; 2; 1; 2; 4
 
*3-colour: 224
 
*3-colour: 224
 
**Type 1: 32; 6; (2); 2
 
**Type 1: 32; 6; (2); 2
**Type 2: 64; 3; 2; 3
+
**Type 2<sub>1</sub>: 64; 3; 2; 3; 1
**Type 3: 64; 3; 2; 3
+
**Type 2<sub>2</sub>: 64; 3; 2; 3; 1
**Type 4: 64; 3; 2; 3
+
**Type 2<sub>3</sub>: 64; 3; 2; 3; 1
*4-colour: 16; 12; 2; 3
+
*4-colour: 16; 12; 2; 3; 1
*Total mobile pieces: 4152
+
*Total pieces: 4 152 ''(4 160)''
*Total stickers: 5832
+
*Total stickers: 5 832
  
 
Number of positions:<br>
 
Number of positions:<br>
(48!/(6!^8))^3 × (96!/(12!^8))^3 × (64!/(8!^8))^3 × (192!/(24!^8))^9 × 384!/(48!^8) × (24! × 32!)/2 × (2^24)/2 × (6^32)/2 × (96!/(4!^24) × (2^96)/2)^6 × (192!/(8!^24) × (2^192)/2)^3 × (64!/2 × (3^64)/3)^3 × 16!/2 × (12^16)/3 =<br>
+
(48!/(6!<sup>8</sup>))<sup>3</sup> × (96!/(12!<sup>8</sup>))<sup>3</sup> × (64!/(8!<sup>8</sup>))<sup>3</sup> × (192!/(24!<sup>8</sup>))<sup>11</sup> × (24! × 32!)/2 × 2<sup>24</sup>/2 × 6<sup>32</sup>/2 × (96!/(4!<sup>24</sup>) × 2<sup>96</sup>/2)<sup>6</sup> × (192!/(4!<sup>48</sup>))<sup>3</sup> × (64!/2 × 3<sup>64</sup>/3)<sup>3</sup> × 16!/2 × 12<sup>16</sup>/3 =
= 578 107 776 180 430 388 102 837 597 507 554 738 026 218 295 608 889 456 750 918 842 950 288 390 048 717 405 663 907 101 699 838 386 699 596 153 953 108 196 281 321 063 690 868 672 377 796 000 032 226 057 971 684 348 744 227 545 396 296 423 449 111 583 259 404 479 996 155 786 834 140 762 234 882 028 558 232 532 744 152 515 647 922 425 971 155 483 154 558 532 182 955 325 618 048 601 984 806 649 571 823 948 428 568 057 547 750 447 127 147 340 826 525 549 050 107 519 088 281 458 280 359 145 972 938 767 485 553 113 456 888 883 434 936 055 857 095 534 792 538 769 607 988 856 585 188 190 598 397 868 018 772 353 755 752 000 477 286 080 993 420 548 243 557 522 434 106 757 475 413 506 099 748 713 273 305 700 273 742 618 781 790 024 378 496 669 235 086 458 318 361 394 186 205 015 093 055 081 640 560 911 299 123 183 880 109 358 519 572 116 369 310 100 343 422 361 015 733 609 156 720 157 574 239 190 917 694 564 780 834 852 369 318 409 343 764 857 284 113 803 237 322 377 642 890 980 883 160 291 376 298 419 656 035 805 327 753 316 529 527 261 623 545 072 578 909 776 792 537 623 005 534 100 018 818 714 759 564 305 793 635 408 897 883 816 419 997 579 218 522 144 566 838 255 501 372 981 484 551 183 971 611 330 545 041 193 462 506 917 385 184 721 695 683 492 906 363 493 883 547 451 021 099 052 080 408 235 777 038 829 913 181 555 859 547 967 676 965 148 112 788 063 933 412 674 429 642 584 218 129 408 102 213 498 760 153 415 594 122 684 759 912 802 543 816 957 010 293 897 433 107 987 061 364 831 062 169 656 430 565 316 379 190 570 468 423 791 910 249 551 630 787 337 005 574 584 383 066 189 914 180 975 049 860 173 081 004 288 621 230 589 282 273 023 070 974 106 469 919 760 271 532 969 845 987 686 462 812 728 313 999 400 052 405 132 102 168 577 195 125 058 177 615 687 275 856 783 166 621 887 347 797 657 401 972 282 507 125 448 486 530 157 828 361 034 388 454 726 485 926 606 987 318 243 861 523 743 790 520 965 805 653 038 463 322 266 930 123 456 381 364 697 258 944 541 834 336 489 361 465 169 484 845 260 492 050 252 012 248 688 288 393 493 581 825 974 510 264 883 094 479 929 571 691 371 121 437 567 462 603 006 625 812 319 786 568 763 971 111 579 101 870 369 944 625 425 416 752 364 932 917 708 548 394 894 921 518 859 241 449 136 545 283 395 101 136 034 100 595 025 609 301 140 830 995 011 757 247 050 119 802 905 884 676 323 450 216 469 321 381 595 348 036 708 745 895 776 612 221 437 606 741 734 041 091 814 873 021 339 711 678 009 140 018 871 160 303 177 019 179 784 503 907 656 889 307 065 099 703 832 746 548 108 424 581 645 764 735 581 652 925 345 839 979 515 703 977 592 201 660 710 586 398 969 585 476 593 500 903 008 309 042 220 097 508 683 101 661 466 733 906 967 003 113 923 284 096 356 950 770 064 015 068 197 708 461 685 468 587 698 975 600 097 792 929 783 379 863 741 099 169 997 858 955 109 165 920 100 877 920 719 036 449 730 517 316 056 386 417 819 802 544 275 434 064 116 013 062 112 604 673 296 940 053 863 523 861 131 551 981 440 420 274 903 552 765 459 517 488 037 487 966 113 952 924 210 761 443 526 887 609 135 869 934 195 247 498 933 658 706 962 405 008 359 372 099 144 889 360 951 628 561 540 083 119 644 162 763 218 663 520 572 601 778 687 916 334 125 160 814 707 710 623 675 587 924 097 665 124 060 604 459 777 751 217 423 331 353 653 456 219 397 302 275 188 358 432 388 133 798 893 328 811 322 208 861 906 802 677 284 776 829 689 657 466 578 215 137 761 700 422 958 510 576 561 988 008 058 309 997 608 435 746 275 786 730 144 752 588 184 544 940 496 898 680 990 226 352 446 204 944 647 647 571 895 854 862 936 604 793 235 975 254 283 361 507 398 590 921 862 098 816 266 869 784 568 521 880 131 270 564 581 185 555 926 818 644 827 935 944 639 977 780 952 135 464 937 940 555 510 872 208 803 056 898 289 624 700 480 313 813 492 327 562 661 385 558 886 372 963 506 928 704 832 210 773 668 893 641 772 111 885 062 745 313 524 445 976 971 134 297 043 758 451 266 673 953 302 916 011 558 529 767 946 549 164 994 297 649 977 958 928 456 721 400 062 439 009 235 239 172 447 184 736 943 364 493 696 792 346 756 719 610 907 726 044 652 653 010 102 253 130 952 766 365 361 399 023 646 205 823 544 038 232 849 234 666 468 016 840 839 213 417 302 337 514 586 436 028 069 741 645 295 425 914 609 666 445 195 670 680 805 573 298 213 686 235 677 302 128 357 337 670 813 187 386 524 459 298 617 830 628 047 324 013 434 030 645 715 364 542 230 845 131 571 813 072 888 934 457 581 851 548 557 631 790 685 026 494 918 897 180 984 366 287 654 179 026 414 529 548 284 774 952 016 571 853 806 820 599 396 481 472 153 026 484 166 578 362 688 075 179 867 770 284 849 747 961 352 130 700 380 645 759 538 780 109 763 376 753 871 736 723 218 590 252 406 162 499 643 984 031 388 772 771 184 857 394 627 784 684 134 521 004 447 326 059 304 619 296 238 338 044 618 979 707 854 574 719 683 804 299 076 074 056 878 215 627 518 932 962 504 648 038 573 465 594 485 531 443 357 480 260 229 266 506 296 517 508 268 205 538 262 687 058 686 660 661 393 537 424 795 035 427 237 275 895 494 326 633 382 221 547 655 078 354 273 176 301 410 541 431 303 921 079 553 180 358 687 768 878 644 916 902 139 836 742 487 579 307 453 098 372 115 874 651 856 274 945 773 791 535 711 723 203 788 822 040 798 945 340 260 383 492 383 885 250 108 586 114 814 714 987 457 902 754 909 381 708 885 922 719 711 843 658 091 487 236 795 287 075 782 874 922 728 950 826 199 225 189 655 779 617 525 526 093 729 543 564 958 479 499 835 236 818 446 204 356 587 627 055 046 459 146 184 957 235 578 181 350 384 924 142 897 732 242 050 143 183 281 660 750 060 351 899 441 157 971 724 206 080 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈<br>
+
<div class="mw-collapsible mw-collapsed">= 287 720 610 342 142 638 099 343 160 892 803 846 287 353 342 063 763 109 985 307 281 171 530 927 114 024 104 078 642 361 774 862 521 032 248 362 521 424 764 192 019 062 345 635 969 295 125 170 661 286 072 914 609 064 946 120 060 335 707 139 872 262 695 919 038 177 318 231 518 172 018 499 210 909 318 840 744 667 866 291 511 085 965 689 346 067 403 281 854 871 197 798 890 812 943 326 824 640 736 563 948 775 652 140 367 740 010 015 631 377 344 284 477 115 731 013 982 635 791 500 678 029 613 764 894 109 395 818 031 762 415 226 111 145 719 626 805 077 478 462 378 948 887 474 806 842 869 895 696 708 147 773 711 160 365 991 235 656 867 231 484 004 778 442 203 331 643 310 284 547 713 784 486 181 648 936 821 787 075 783 550 228 123 130 415 837 138 014 753 779 572 742 973 871 168 343 371 201 820 870 458 410 952 760 980 242 141 059 500 287 492 908 517 502 563 849 227 132 472 062 089 916 965 101 738 606 947 333 510 123 550 398 790 895 898 149 476 665 324 083 012 153 265 747 830 168 253 713 085 847 854 544 363 729 805 568 120 346 814 411 966 022 937 838 870 031 323 200 401 084 480 566 529 799 186 350 279 750 837 745 789 704 619 578 466 605 238 106 035 925 959 831 674 461 158 014 230 961 791 578 761 736 461 402 551 992 417 825 390 233 787 773 834 917 572 130 737 124 855 591 498 702 062 004 675 530 380 594 713 878 473 005 236 013 848 821 718 240 973 436 373 321 289 902 537 467 680 489 242 861 433 397 776 835 164 532 404 600 480 470 288 698 241 616 437 343 022 182 600 771 639 804 430 297 206 085 513 566 783 108 926 199 773 306 406 772 417 289 807 850 233 011 994 446 976 457 695 070 082 019 621 764 798 058 491 741 448 215 195 773 170 890 915 159 243 344 703 440 938 067 059 519 585 270 141 482 670 760 668 120 722 744 586 741 916 658 509 355 997 035 115 359 000 359 531 160 726 890 683 395 901 336 867 168 248 021 283 961 267 250 732 258 031 418 818 435 265 746 034 817 822 343 392 482 495 324 689 270 877 247 494 527 456 998 427 180 187 755 226 458 065 576 140 796 416 210 203 250 353 954 134 543 481 941 240 720 984 093 796 824 983 512 236 914 220 998 624 395 640 897 377 058 090 648 988 115 325 292 967 525 453 639 841 349 773 306 272 111 316 958 039 883 469 099 284 416 233 384 086 262 589 758 696 907 365 840 247 908 192 615 922 617 172 684 825 444 364 277 200 130 935 478 504 254 198 187 785 451 187 150 447 941 895 471 988 655 114 463 720 497 568 861 265 943 923 320 467 122 820 904 247 231 579 577 882 555 054 939 459 680 454 984 461 381 818 990 363 773 477 736 262 787 769 044 398 594 211 609 874 855 705 693 986 143 071 257 363 673 753 946 265 895 144 129 893 167 212 151 748 888 617 791 127 180 828 458 134 412 349 079 758 301 211 743 863 533 594 643 286 566 331 512 498 529 062 504 758 456 535 199 341 378 180 796 853 986 358 535 823 595 140 285 120 788 867 888 340 266 938 584 770 309 044 901 038 017 531 742 052 158 502 824 115 366 725 841 305 625 242 242 199 045 498 941 101 359 329 751 489 664 494 622 456 348 668 690 065 668 600 010 324 328 533 831 286 953 544 656 401 151 133 341 799 285 700 305 425 006 989 263 580 490 671 610 420 878 753 703 879 216 129 960 722 903 621 993 374 764 652 473 703 823 767 212 161 507 092 847 766 137 561 334 921 929 064 325 625 270 076 379 019 173 182 881 144 984 655 642 337 113 210 962 357 687 488 222 335 127 764 184 642 816 033 293 747 664 628 672 496 494 046 970 787 532 368 159 065 501 894 544 413 645 421 751 637 191 777 538 752 762 221 586 324 275 665 141 877 143 888 218 183 490 801 944 665 875 151 675 769 348 043 308 822 309 111 619 548 331 111 889 041 731 603 438 292 954 860 630 338 980 960 432 499 287 876 696 655 714 941 748 511 094 761 618 448 320 578 202 377 203 491 475 753 365 952 805 639 707 681 386 905 517 324 900 182 400 577 043 163 822 295 276 864 841 057 930 782 106 081 125 810 029 961 826 245 319 063 703 107 848 085 349 230 762 031 386 914 334 770 291 688 480 431 565 516 661 253 101 878 386 069 921 961 494 432 283 945 804 363 424 376 933 945 498 180 861 196 358 926 118 552 776 496 422 410 021 714 624 000 246 179 608 392 650 847 001 463 956 881 767 937 683 918 984 983 851 429 742 120 354 512 607 170 741 894 908 495 208 761 472 937 302 396 568 205 425 685 617 105 250 336 057 772 866 186 657 085 991 446 721 096 600 383 107 286 354 226 860 511 607 238 164 457 031 014 412 954 440 437 330 825 085 925 388 440 643 697 982 773 797 023 414 174 670 752 499 943 864 191 473 251 980 905 464 920 998 194 537 111 018 452 261 496 463 528 499 896 058 816 881 917 196 777 135 334 465 663 235 931 322 479 195 243 346 392 325 086 924 031 361 545 914 566 206 145 591 085 147 725 920 489 903 498 056 298 781 952 906 031 474 081 424 266 872 286 453 604 488 124 517 047 286 312 592 527 372 121 289 723 644 354 326 312 209 823 240 416 644 640 119 537 881 015 756 410 301 479 473 426 377 219 237 459 164 467 708 558 723 034 133 087 030 495 823 395 395 310 558 474 014 261 174 752 171 002 782 061 505 871 297 825 935 268 803 353 355 317 166 194 404 309 684 560 541 268 535 053 486 419 748 559 735 566 231 958 409 705 932 095 234 053 185 517 361 202 213 491 286 492 062 396 684 585 746 807 982 046 097 525 084 485 293 512 210 894 350 573 939 380 175 849 887 040 956 737 752 021 607 589 279 168 335 716 464 017 748 059 642 403 147 514 895 377 267 295 402 868 972 262 361 343 302 807 393 397 046 327 434 346 812 942 507 402 536 292 701 824 106 397 015 154 067 059 730 706 185 686 243 202 106 273 501 225 679 419 604 992 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈</div>
5.78×10^4607<br>
+
≈ 2.88 × 10<sup>4 562</sup><br>
578 milliquattuortrigintaquingentillion 108 millitrestrigintaquingentillion (short scale) / 578 septensexagintaseptingentilliard 108 septensexagintaseptingentillion (long scale)
+
≈ 287 millinovendeciquingentillion 721 millioctodeciquingentillion (short scale) / 287 sexagintaseptingentillion 721 novenquinquagintaseptingentilliard (long scale)
 +
 
 +
==Magic120Cell==
 +
 
 +
Calculated [http://www.gravitation3d.com/magic120cell/Hyperminx_number_of_positions.txt by David Smith].
 +
 
 +
==={5,3,3}===
 +
 
 +
*Shape: Regular 120-cell (hecatonicosachoron)
 +
*Cells (colours): 120 regular dodecahedra {5,3}
 +
*Faces: 720 regular pentagons {5}
 +
*Edges: 1 200
 +
*Vertices: 600
 +
 
 +
====Length 3====
 +
 
 +
*''(1-colour: 120)''
 +
*2-colour: 720; 2; 2; 2; 1
 +
*3-colour: 1 200; 6; 2; 2; 1
 +
*4-colour: 600; 12; 2; 3; 1
 +
*Total pieces: 2 520 ''(2 640)''
 +
*Total stickers: 7 560
 +
 
 +
Number of positions:<br>
 +
720!/2 × 2<sup>720</sup>/2 × 1 200!/2 × 6<sup>1 200</sup>/2 × 600!/2 × 12<sup>600</sup>/3 =
 +
<div class="mw-collapsible mw-collapsed">=  234 350 183 636 972 227 791 262 106 061 403 436 009 822 198 667 086 672 277 042 914 659 400 073 774 319 800 153 708 601 641 374 806 535 922 821 762 263 386 933 076 912 952 360 189 149 779 990 823 414 733 250 819 032 377 663 096 727 895 392 891 107 724 676 361 939 174 468 537 213 471 846 992 601 319 245 847 249 389 457 902 426 808 621 472 951 137 628 515 714 321 309 010 402 389 614 955 126 684 276 946 515 862 937 061 881 599 504 131 432 882 973 243 205 717 606 361 116 123 422 302 770 133 676 753 359 134 856 348 612 503 635 674 252 607 065 815 753 807 941 966 366 980 575 365 121 967 159 195 941 807 798 913 383 035 380 850 062 708 915 835 494 679 925 673 918 518 053 577 898 510 313 797 495 111 434 693 441 628 626 452 532 253 224 269 804 432 745 536 245 594 013 789 336 900 464 999 769 975 314 632 465 421 639 791 307 831 594 564 938 014 806 846 431 708 164 157 700 104 839 632 172 849 209 633 542 659 921 294 733 092 218 742 227 315 611 781 654 235 329 679 826 491 953 686 937 325 441 213 056 588 619 593 598 666 736 889 834 983 499 821 329 543 130 389 608 025 077 440 970 771 216 857 898 162 084 209 764 122 888 617 411 552 472 359 695 530 385 609 876 945 125 257 806 408 918 454 106 150 264 444 833 771 798 553 261 328 987 523 426 195 955 261 864 192 825 838 393 463 257 028 745 538 799 178 034 746 712 101 072 211 361 928 836 844 443 707 162 412 473 785 444 967 682 885 281 547 729 595 860 180 055 748 863 425 829 871 468 832 851 051 065 381 131 338 167 010 626 775 583 839 525 469 329 275 790 653 523 780 169 993 885 763 561 181 690 786 606 328 047 756 671 151 160 065 140 262 128 700 717 741 965 747 137 395 706 297 269 591 116 929 204 261 763 967 322 064 643 743 204 180 740 840 609 622 274 504 775 333 288 519 631 527 960 370 249 757 680 392 182 387 019 002 529 542 699 381 773 515 750 267 738 941 640 410 834 618 718 942 418 089 632 566 581 876 392 375 399 988 287 313 858 084 677 228 966 566 309 226 326 618 668 840 915 289 587 325 249 776 450 099 751 298 794 240 127 365 823 388 300 998 637 625 869 406 260 709 927 139 123 346 483 927 375 973 619 506 539 865 302 523 032 720 783 633 388 125 039 381 959 436 082 990 003 217 709 049 427 493 044 839 288 986 552 716 614 065 052 187 986 459 391 365 691 818 487 107 035 801 789 611 790 557 625 739 664 732 160 658 519 387 279 270 237 092 966 022 293 347 907 119 814 001 491 877 743 300 906 860 381 886 939 126 160 623 528 649 454 218 117 086 511 485 184 995 337 371 754 323 606 172 343 425 678 026 170 547 107 650 201 457 180 103 595 669 061 215 322 965 129 698 879 686 174 938 686 442 023 883 007 483 403 091 013 908 374 627 397 178 798 610 159 664 077 255 377 013 157 605 953 025 517 167 198 641 595 972 665 185 519 883 327 063 852 166 892 316 397 207 248 896 763 386 296 802 046 459 857 154 591 489 337 994 834 077 319 666 200 102 594 473 324 166 310 981 151 194 815 089 205 571 511 828 945 391 919 824 682 938 944 726 602 750 877 108 462 771 345 248 658 182 661 330 544 233 438 090 327 118 503 762 699 971 211 812 095 718 463 799 745 437 303 353 670 889 969 193 267 133 888 402 013 848 180 589 600 375 369 501 541 798 982 850 283 307 728 992 349 369 110 105 465 204 678 264 260 048 804 731 152 096 076 006 459 723 155 357 181 729 879 824 514 748 449 863 820 793 955 082 613 199 132 150 233 436 411 804 470 292 026 872 034 176 239 636 709 461 886 613 506 333 873 119 893 045 317 942 691 097 910 138 170 606 688 929 064 386 560 230 196 639 558 148 500 130 297 428 519 915 700 012 537 420 520 234 636 644 789 436 402 217 124 587 298 055 753 106 000 526 317 510 742 135 814 305 844 442 949 965 524 208 865 520 627 356 521 257 319 553 760 877 333 581 750 403 698 478 423 610 827 287 681 768 029 874 613 544 014 049 713 469 388 295 715 273 114 485 426 114 071 663 143 960 153 884 325 400 418 187 491 176 387 374 945 426 893 411 117 717 179 322 371 239 789 914 523 562 317 729 061 912 378 481 785 718 757 527 809 025 164 214 840 994 381 181 018 155 477 448 811 016 038 175 506 185 165 844 643 664 291 009 318 841 540 442 623 797 307 782 513 033 969 558 556 951 173 795 350 346 916 064 664 080 114 952 893 753 147 971 811 983 723 741 421 714 461 243 289 036 290 880 600 941 929 052 275 198 017 830 862 609 782 557 352 902 277 742 867 710 678 069 168 798 437 309 117 460 470 080 742 233 210 420 451 923 518 922 221 100 343 067 646 756 365 662 137 924 045 055 728 658 447 308 508 239 098 582 210 358 543 412 548 870 575 309 693 930 275 612 805 459 697 640 564 814 728 668 657 125 642 861 444 170 150 339 281 973 567 744 826 847 917 503 807 378 348 535 977 716 210 565 251 241 466 128 121 274 897 445 107 556 070 301 043 547 068 352 984 632 585 859 932 149 649 122 840 964 873 582 336 551 164 508 341 822 477 944 405 427 354 854 117 650 422 126 948 507 494 631 091 500 248 871 806 278 368 621 631 798 236 853 973 136 155 878 954 455 605 260 743 873 955 312 576 387 057 492 914 644 342 615 095 078 886 715 116 370 337 909 325 455 873 511 562 412 431 135 398 120 478 033 256 899 123 205 987 734 385 266 299 156 861 577 589 666 263 718 174 846 840 994 733 708 058 040 572 024 450 182 896 514 659 885 925 637 625 707 421 001 762 988 412 973 222 775 700 881 854 246 867 209 282 812 969 024 120 912 611 719 453 101 515 559 612 768 702 911 263 725 124 362 700 695 283 007 427 158 938 273 753 421 007 871 320 460 511 374 328 014 288 926 721 919 717 035 489 582 163 680 862 223 974 028 925 034 235 784 987 192 176 322 008 136 686 679 929 878 224 156 104 032 641 507 539 276 418 887 423 987 558 437 644 584 424 625 778 012 130 071 092 874 015 517 584 127 868 450 228 205 391 862 420 918 010 014 972 651 430 621 067 311 360 911 709 124 613 565 223 035 254 373 475 279 222 721 857 792 173 328 260 547 996 939 875 237 576 837 159 815 118 684 379 956 285 282 340 829 129 114 813 124 511 441 480 674 223 236 440 806 564 494 904 761 786 997 497 220 866 072 080 531 251 512 359 233 089 746 999 153 404 027 542 561 581 016 655 986 290 453 613 626 399 014 292 854 794 414 276 344 511 148 330 328 685 197 189 376 868 495 672 292 922 197 308 630 407 065 165 346 612 255 225 949 161 931 359 823 607 526 307 020 240 836 436 949 830 937 069 849 809 308 482 400 043 027 861 424 437 961 373 704 458 350 556 213 509 799 267 805 260 822 568 001 712 636 170 958 894 341 958 120 566 294 218 192 269 192 589 063 843 887 982 763 996 918 636 921 155 601 261 407 156 101 091 140 031 498 494 494 124 455 479 183 960 537 854 210 220 332 286 311 777 160 818 120 201 556 745 279 866 499 568 318 367 666 713 126 108 104 030 610 697 346 947 842 941 118 989 099 929 505 001 072 885 907 143 020 380 705 671 971 970 771 746 411 976 494 006 132 897 624 407 479 995 947 118 186 774 783 800 933 226 933 904 434 976 150 679 085 810 250 987 241 214 902 290 157 997 887 959 501 532 373 654 044 650 464 540 724 827 124 442 974 862 512 599 608 887 589 752 218 559 193 144 931 596 281 284 315 382 618 742 792 620 666 168 815 937 879 429 611 156 691 059 275 386 225 869 085 102 052 230 791 603 298 909 766 132 431 843 745 422 700 743 736 105 365 752 210 463 536 553 090 494 110 909 442 611 137 994 691 371 854 373 062 622 155 659 107 585 797 616 686 931 874 970 164 036 381 491 924 856 162 327 083 872 159 832 784 892 871 225 173 838 934 455 509 878 869 052 143 626 779 256 827 430 593 180 929 071 598 237 892 323 881 917 437 767 124 611 594 812 833 324 722 831 912 849 909 628 709 036 406 418 925 007 261 761 200 623 236 257 957 747 401 814 104 819 201 322 380 783 299 932 882 694 977 050 696 484 128 986 066 828 920 582 164 145 351 377 031 723 253 492 260 364 352 335 000 600 881 110 191 721 104 936 448 981 989 082 797 355 346 681 231 270 079 424 797 013 624 959 971 368 830 975 248 367 892 523 082 396 738 072 274 831 267 273 049 793 679 458 450 960 225 575 330 908 403 250 559 251 273 694 914 050 780 115 696 009 598 290 555 923 549 819 002 652 129 928 887 453 752 308 595 504 491 186 854 693 165 582 667 611 111 414 091 791 772 144 937 304 305 990 824 075 969 774 780 698 659 600 903 247 322 382 509 271 117 981 454 345 778 343 923 721 701 140 340 403 871 427 309 462 919 487 685 185 442 914 605 949 181 042 724 392 972 706 601 952 392 046 985 121 203 872 647 448 592 119 206 672 539 522 584 235 061 875 250 569 155 009 801 753 244 529 742 915 483 006 071 654 290 990 776 376 332 377 597 123 229 369 363 319 211 034 520 828 156 163 836 265 997 516 927 340 541 251 426 934 242 084 412 591 407 399 673 219 421 034 603 904 857 351 254 920 453 819 936 144 160 298 158 892 279 656 437 272 980 263 715 096 746 399 622 026 992 509 662 606 254 579 651 749 991 204 772 662 937 610 983 604 733 514 590 588 466 763 484 779 753 365 217 869 789 011 109 367 047 291 274 553 969 425 542 647 205 414 931 723 513 675 862 785 211 800 955 378 173 675 246 094 101 265 389 571 455 680 897 196 882 022 023 370 818 552 428 926 324 734 529 251 413 367 934 964 381 909 880 343 066 993 726 638 347 012 446 562 279 909 471 006 658 710 992 879 365 753 689 135 552 972 521 026 921 857 196 917 515 279 611 839 224 552 317 237 178 708 422 716 859 793 076 637 548 113 473 097 626 484 088 093 756 237 600 210 035 626 235 107 696 623 982 892 463 214 959 186 113 390 887 996 406 714 662 349 935 032 809 366 747 705 659 287 390 572 211 075 284 469 667 754 831 557 721 429 953 302 943 200 845 519 172 754 076 028 783 021 881 385 289 734 946 206 816 182 672 349 638 262 546 516 746 190 184 004 943 185 052 489 018 407 136 301 332 421 978 685 188 429 040 584 176 333 209 422 917 640 992 438 642 326 814 484 719 887 971 140 617 271 406 785 982 756 642 098 882 530 214 055 198 156 321 687 465 084 510 626 866 098 541 410 124 686 029 015 270 199 271 073 463 246 913 906 027 315 236 159 811 812 426 751 417 487 110 100 479 881 455 904 096 718 779 749 277 515 897 027 333 976 945 734 065 218 134 270 434 752 361 004 732 388 011 501 437 200 686 719 863 079 687 918 517 352 602 378 309 935 928 395 165 534 054 555 711 853 421 756 020 795 519 940 442 409 633 728 383 995 394 357 388 277 230 454 238 664 055 061 747 285 720 327 136 114 251 359 554 586 129 278 357 158 728 391 085 518 469 776 826 036 552 227 291 371 458 293 565 838 638 186 496 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈</div>
 +
≈ 2.34 × 10<sup>8 126</sup><br>
 +
≈ 234 duomilliseptenseptingentillion 350 duomilliseseptingentillion (short scale) / 234 milliquattuorquinquagintatrecentillion 350 millitresquinquagintatrecentilliard (long scale)
 +
 
 +
==MagicCube5D==
 +
 
 +
Calculated [http://www.gravitation3d.com/magiccube5d/permutations.html by David Smith].
 +
 
 +
==={4,3,3,3}===
 +
 
 +
*Shape: Penteract
 +
*4-faces (colours): 10 tesseracts {4,3,3}
 +
*Cells: 40 cubes {4,3}
 +
*Faces: 80 squares {4}
 +
*Edges: 80
 +
*Vertices: 32
 +
 
 +
====Length 2====
 +
 
 +
*5-colour: 32; 60; 2; 1; 1
 +
*Puzzle orientation constraint: 1 920
 +
*Total pieces: 32
 +
*Total stickers: 160
 +
 
 +
Number of positions:<br>
 +
(32!/2 × 60<sup>32</sup>)/1 920 =<br>
 +
= 54 535 655 175 308 197 058 635 263 389 110 963 213 764 726 777 446 400 000 000 000 000 000 000 000 000 000 000 000 000 ≈<br>
 +
≈ 5.45 × 10<sup>88</sup><br>
 +
≈ 54 octovigintillion 536 septemvigintillion (short scale) / 54 quattuordecilliard 536 quattuordecillion
 +
 
 +
====Length 3====
 +
 
 +
*''(1-colour: Type 1: 10)''
 +
*2-colour: Type 1: 40; 2; (2); 2; 1
 +
*3-colour: Type 1: 80; 6; (2); 2; 1
 +
*4-colour: Type 1: 80; 24; 2; 2; 1
 +
*5-colour: 32; 60; 2; 1; 1
 +
*Total pieces: 232 ''(242)''
 +
*Total stickers: 800
 +
 
 +
Number of positions:<br>
 +
(40! × 80!)/2 × 2<sup>40</sup>/2 × 6<sup>80</sup>/2 × 80!/2 × 24<sup>80</sup>/2 × 32!/2 × 60<sup>32</sup> =<br>
 +
= 701 667 712 402 950 678 588 563 925 537 442 843 125 814 486 474 172 376 339 080 083 735 282 432 570 880 422 175 614 251 163 058 229 250 653 847 841 202 640 036 019 428 140 364 685 715 598 365 298 331 873 395 846 086 528 536 260 972 280 760 386 269 552 019 118 684 785 923 871 866 118 371 825 759 785 012 234 146 827 079 564 220 427 338 910 666 898 674 313 780 003 300 502 236 858 905 700 554 243 767 722 706 512 968 255 467 907 689 651 857 607 094 055 701 717 148 055 663 687 118 563 692 897 948 419 085 505 315 326 824 962 012 039 175 406 034 820 217 915 303 954 177 226 545 938 524 363 992 267 629 090 384 186 791 766 814 569 267 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈<br>
 +
≈ 7.02 × 10<sup>560</sup><br>
 +
≈ 701 quinquaoctogintacentillion 668 quattuoroctogintacentillion (short scale) / 701 trenonagintillion 668 duononagintilliard (long scale)
 +
 
 +
====Length 4====
 +
 
 +
*1-colour: Type 5: 160; 1; 1; 1; 16
 +
*2-colour: Type 4: 320; 2; 1; 2; 8
 +
*3-colour: Type 3: 320; 6; 1; 2; 4
 +
*4-colour: Type 2: 160; 12; 2; 3; 1
 +
*5-colour: 32; 60; 2; 1; 1
 +
*Puzzle orientation constraint: 1 920
 +
*Total pieces: 992
 +
*Total stickers: 2 560
 +
 
 +
Number of positions:<br>
 +
(160!/(16!<sup>10</sup>) × 320!/(8!<sup>40</sup>) × 2<sup>320</sup>/2 × 320!/(4!<sup>80</sup>) × 6<sup>320</sup>/2 × 160!/2 × 12<sup>160</sup>/3 × 32!/2 × 60<sup>32</sup>)/1 920 =
 +
<div class="mw-collapsible mw-collapsed">= 329 258 817 090 464 311 419 012 233 046 978 426 360 158 605 795 977 131 940 223 230 435 097 869 919 859 586 699 140 369 170 815 039 190 102 139 049 185 312 695 181 218 968 746 923 853 410 843 685 525 261 643 119 750 409 364 803 904 377 420 404 711 265 372 946 648 200 199 642 462 697 534 931 009 574 396 412 235 997 741 126 965 917 568 483 121 979 830 246 663 436 534 365 203 153 651 017 870 287 935 678 667 319 720 373 334 817 163 947 574 944 903 018 924 762 125 397 059 043 303 724 684 994 061 492 600 399 152 245 408 467 451 054 222 242 623 933 920 712 849 736 956 525 360 427 315 837 912 334 435 027 044 822 163 933 734 072 209 292 915 555 775 468 708 127 133 353 449 355 022 472 887 388 942 874 891 462 626 199 801 944 047 834 417 856 614 426 628 542 638 474 541 136 391 849 035 063 235 221 285 223 467 321 748 368 506 014 457 845 896 547 461 455 850 760 787 280 484 567 491 508 403 703 415 886 835 653 219 713 941 459 369 901 867 028 171 572 852 213 370 834 360 897 058 493 037 563 580 594 557 174 708 581 542 792 082 257 298 444 906 818 514 086 713 485 707 083 464 971 906 543 442 722 359 115 905 244 647 515 430 463 061 136 552 484 130 503 280 040 096 452 627 348 006 698 959 149 964 681 951 621 637 274 204 744 919 841 785 915 589 132 723 509 507 926 586 079 720 706 128 410 637 488 279 370 221 188 495 470 258 029 468 127 436 426 526 362 520 619 549 555 604 101 007 513 811 594 696 214 011 684 114 749 010 156 924 735 658 453 522 125 972 528 061 153 537 466 316 535 306 095 178 484 714 940 903 036 286 768 547 981 096 802 166 745 652 404 844 042 933 459 417 476 639 613 979 811 251 983 932 936 459 830 427 643 557 292 263 979 875 049 074 355 021 769 999 385 484 556 708 201 030 479 649 241 606 472 656 901 848 969 488 395 723 900 618 963 451 793 918 910 196 638 024 341 119 334 041 999 716 958 329 437 618 859 694 196 278 022 967 518 616 323 150 193 717 241 617 439 227 464 441 273 126 623 600 061 301 408 854 484 592 567 520 393 106 376 946 128 497 710 024 563 911 818 551 909 198 932 311 975 727 737 368 699 337 712 022 727 069 323 470 751 622 830 345 042 373 084 798 131 181 275 673 443 484 935 113 105 727 775 844 362 068 570 162 046 349 449 717 687 506 740 733 935 559 816 398 802 377 138 304 163 893 790 041 113 859 507 798 016 124 423 134 839 501 583 639 476 256 162 266 507 172 848 550 206 867 719 601 607 477 720 397 898 913 538 531 371 859 021 518 276 873 497 082 971 942 412 335 821 858 166 889 228 708 566 721 367 703 811 317 996 536 977 600 302 207 464 487 459 270 311 280 640 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈</div>
 +
≈ 3.29 × 10<sup>2 075</sup><br>
 +
≈ 329 nonagintasescentillion 259 novemoctogintasescentillion (short scale) / 329 quinquaquadragintatrecentilliard 259 quinquaquadragintatrecentillion (long scale)
 +
 
 +
====Length 5====
 +
 
 +
*1-colour: 800 ''(810)''
 +
**(Type 1: 10)
 +
**Type 2.1: 80; 1; 1; 1; 8
 +
**Type 3.1: 240; 1; 1; 1; 24
 +
**Type 4.1: 320; 1; 1; 1; 32
 +
**Type 5: 160; 1; 1; 1; 16
 +
*2-colour: 1 080
 +
**Type 1: 40; 2; (2); 2; 1
 +
**Type 2.1: 240; 2; 1; 2; 6
 +
**Type 3.1: 480; 2; 1; 2; 12
 +
**Type 4: 320; 2; 1; 2; 8
 +
*3-colour: 720
 +
**Type 1: 80; 6; (2); 2; 1
 +
**Type 2.1: 320; 6; 1; 2; 4
 +
**Type 3: 320; 6; 1; 2; 4
 +
*4-colour: 240
 +
**Type 1: 80; 24; 2; 2; 1
 +
**Type 2: 160; 12; 2; 3; 1
 +
*5-colour: 32; 60; 2; 1; 1
 +
*Total pieces: 2 872 ''(2 882)''
 +
*Total stickers: 6 520
 +
 
 +
Number of positions:<br>
 +
80!/(8!<sup>10</sup>) × 240!/(24!<sup>10</sup>) × 320!/(32!<sup>10</sup>) × 160!/(16!<sup>10</sup>) × (40! × 80!)/2 × 2<sup>40</sup>/2 × 6<sup>80</sup>/2 × 240!/(6!<sup>40</sup>) × 2<sup>240</sup>/2 × 480!/(12!<sup>40</sup>) × 2<sup>480</sup>/2 × 320!/(8!<sup>40</sup>) × 2<sup>320</sup>/2 × (320!/(4!<sup>80</sup>) × 6<sup>320</sup>/2)<sup>2</sup> × 80!/2 × 24<sup>80</sup>/2 × 160!/2 × 12<sup>160</sup>/3 × 32!/2 × 60<sup>32</sup> =
 +
<div class="mw-collapsible mw-collapsed">= 231 742 496 334 769 621 203 570 925 792 667 041 261 904 107 297 893 531 866 261 129 442 767 966 574 856 004 567 939 907 860 262 055 620 626 854 986 635 712 884 737 859 907 192 504 857 197 031 162 875 670 032 292 045 664 704 325 567 404 830 729 887 736 247 656 191 551 659 807 096 917 570 463 527 185 957 743 222 684 517 653 378 698 554 880 115 382 183 752 318 022 919 490 829 888 949 807 818 844 111 074 415 267 375 185 499 872 554 371 229 703 887 148 942 593 982 550 603 018 850 708 052 566 109 797 892 237 722 552 844 669 229 776 730 164 293 382 996 583 005 818 642 780 335 723 947 317 878 323 659 940 954 910 030 677 671 342 106 799 060 405 851 777 167 813 676 976 922 090 130 676 324 147 887 927 343 956 133 267 753 209 106 481 298 779 210 517 846 799 598 218 868 050 609 061 869 714 134 363 659 062 456 431 623 090 252 535 875 636 852 308 343 217 394 432 387 656 040 776 518 756 128 300 305 679 436 988 693 838 529 384 437 863 810 962 105 446 950 129 618 160 256 425 373 508 600 000 973 456 890 228 696 054 685 181 633 221 136 858 399 022 692 704 212 373 228 722 760 696 019 599 511 942 704 193 617 785 937 543 665 220 527 401 016 496 651 556 435 036 725 902 903 504 168 820 323 927 587 119 276 087 346 998 250 668 774 499 937 775 422 750 023 260 143 265 722 588 823 133 028 316 778 725 688 719 808 592 102 478 536 219 541 613 625 194 267 293 678 389 372 300 699 055 067 569 162 915 955 221 783 557 091 125 066 400 106 235 096 886 976 004 117 684 571 040 907 455 392 011 362 588 086 377 098 290 209 973 084 221 009 377 693 783 879 861 306 915 819 926 453 899 281 076 368 398 731 429 137 617 987 206 984 289 050 335 786 404 638 796 552 552 512 473 488 228 714 562 028 841 690 530 787 553 914 776 131 739 483 263 599 066 465 269 536 540 022 441 337 085 484 780 658 788 527 943 285 163 059 337 659 527 843 661 906 501 200 530 560 880 260 333 095 302 697 352 678 020 900 637 533 444 263 406 669 400 399 864 924 031 032 120 085 877 604 985 734 961 818 865 933 042 987 698 116 469 198 327 566 964 103 855 323 184 806 092 090 569 905 856 975 160 938 895 656 505 428 601 999 743 413 919 891 724 042 889 646 202 951 707 121 362 801 056 047 880 408 108 594 072 387 964 721 462 391 391 550 029 395 797 761 424 670 516 354 617 429 415 896 669 850 938 642 357 151 218 825 101 854 156 626 780 152 417 259 275 237 468 993 654 208 236 980 894 222 953 475 307 951 276 963 606 908 298 074 925 640 205 180 608 443 146 514 862 339 587 570 615 899 956 065 840 035 063 822 343 826 481 306 371 330 899 015 063 550 828 460 653 634 108 090 439 641 229 134 003 963 254 789 188 302 753 561 464 035 008 484 451 107 690 801 648 435 734 567 393 863 982 187 214 106 566 174 462 785 881 787 940 625 758 433 606 731 165 703 823 479 575 025 604 065 973 557 622 779 686 754 812 584 359 806 570 438 434 470 463 570 481 119 435 445 403 063 108 357 635 771 332 974 005 824 391 988 614 764 849 368 840 621 214 515 227 294 998 977 130 903 630 603 558 667 058 876 557 220 035 175 535 895 350 487 501 204 857 341 099 060 461 776 519 741 638 877 229 400 147 108 008 194 230 266 124 796 743 860 156 385 893 643 687 625 599 137 978 634 857 571 149 607 693 549 008 586 349 470 275 387 919 689 799 345 397 001 935 090 903 098 723 359 575 181 195 762 899 994 338 707 084 333 606 712 334 260 252 061 616 751 321 318 234 863 225 572 756 318 372 195 071 559 092 800 498 231 859 585 623 143 819 115 144 733 435 085 004 789 865 552 761 804 323 391 865 507 273 946 827 021 548 666 534 806 463 912 659 055 157 117 329 473 610 579 400 565 146 733 929 484 073 134 407 668 911 540 245 422 399 124 836 298 253 914 307 028 983 368 835 781 570 335 038 657 696 216 570 009 406 628 119 845 364 140 600 955 638 004 276 079 910 209 252 025 372 529 826 557 053 195 049 066 393 647 986 864 522 482 126 155 388 973 659 587 218 715 138 631 527 903 794 445 305 909 256 786 715 151 156 749 251 647 443 563 211 593 085 920 796 644 719 583 279 472 446 750 077 192 464 590 776 175 521 449 680 184 496 916 252 430 272 713 268 607 256 428 947 753 713 190 687 085 108 259 423 242 854 295 705 114 159 373 482 429 213 819 640 055 717 176 175 837 722 405 227 115 153 969 352 614 909 689 965 006 572 729 802 359 811 797 630 978 395 888 115 796 006 729 360 973 413 071 401 866 865 201 572 587 367 719 172 964 143 533 453 986 296 371 344 504 838 915 950 679 085 954 648 047 200 310 842 899 110 093 150 299 561 401 601 822 141 059 865 014 475 489 776 630 063 658 344 823 360 895 509 091 430 185 074 906 374 473 739 046 025 797 361 948 222 195 243 863 926 948 524 930 457 848 056 994 278 678 818 281 817 729 777 291 699 469 989 208 747 319 264 493 157 351 546 533 319 661 245 199 503 982 987 606 121 103 375 190 117 350 685 081 669 943 718 631 243 924 907 151 824 143 336 324 743 627 664 806 457 758 755 514 877 705 764 493 933 082 743 045 561 393 840 342 991 843 349 277 070 411 031 283 790 860 458 879 260 178 499 645 122 950 708 219 745 567 188 476 870 316 867 225 529 738 889 549 161 594 583 600 840 139 482 590 791 112 449 022 078 773 072 639 370 552 972 217 745 431 457 687 591 463 812 728 174 392 552 156 449 099 948 457 718 499 330 600 042 049 723 119 205 826 281 539 393 889 521 087 935 802 680 273 177 377 017 088 898 133 957 635 255 924 481 466 844 568 819 939 480 520 375 089 368 996 021 982 557 235 724 309 600 452 745 591 108 879 707 520 587 272 644 685 433 867 517 859 975 169 038 044 934 577 685 884 739 692 272 964 699 080 077 670 239 465 147 693 151 162 028 650 117 193 071 355 300 284 060 409 677 575 304 521 029 866 908 629 660 211 181 048 031 817 067 057 885 821 535 825 552 129 318 201 826 288 023 502 841 931 124 522 394 714 812 089 812 635 322 050 500 172 037 436 368 525 964 251 951 908 978 837 497 643 697 642 447 440 094 584 612 967 903 485 949 414 404 904 916 038 816 131 378 162 577 346 608 234 118 255 632 549 624 565 318 920 040 998 564 042 961 686 162 128 637 365 409 723 599 687 232 386 318 103 637 649 323 581 462 934 171 360 176 419 010 808 268 516 499 506 869 542 918 189 702 122 202 612 201 852 425 397 307 199 412 641 440 245 802 085 079 285 519 325 692 869 018 868 802 430 748 644 463 177 084 541 616 196 928 248 849 048 910 545 355 802 376 319 055 345 745 527 095 923 132 110 142 313 707 309 052 502 265 649 319 924 149 745 635 382 300 216 567 472 065 111 289 713 379 446 889 059 166 110 678 054 593 139 994 163 324 702 818 200 692 176 672 236 446 232 820 825 795 162 392 223 963 274 594 030 083 691 193 864 778 717 595 561 182 705 130 352 316 876 286 431 499 666 587 722 327 634 644 810 176 112 938 188 800 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈</div>
 +
≈ 2.32 × 10<sup>5 267</sup><br>
 +
≈ 231 milliquattuorquinquagintaseptingentillion 742 millitresquinquagintaseptingentillion (short scale) / 231 septenseptuagintaoctingentilliard 742 septenseptuagintaoctingentillion (long scale)
 +
 
 +
====Length 6====
 +
 
 +
*1-colour: 2 560
 +
**Type 5<sub>1</sub>: 160; 1; 1; 1; 16
 +
**Type 2.4: 640; 1; 1; 1; 64
 +
**Type 3.3: 960; 1; 1; 1; 96
 +
**Type 4.2: 640; 1; 1; 1; 64
 +
**Type 5<sub>2</sub>: 160; 1; 1; 1; 16
 +
*2-colour: 2 560
 +
**Type 4<sub>1</sub>: 320; 2; 1; 2; 8
 +
**Type 2.3: 960; 2; 1; 2; 24
 +
**Type 3.2: 960; 2; 1; 2; 24
 +
**Type 4<sub>2</sub>: 320; 2; 1; 2; 8
 +
*3-colour: 1 280
 +
**Type 3<sub>1</sub>: 320; 6; 1; 2; 4
 +
**Type 2.2: 640; 3; 1; 3; 4
 +
**Type 3<sub>2</sub>: 320; 6; 1; 2; 4
 +
*4-colour: 320
 +
**Type 2<sub>1</sub>: 160; 12; 2; 3; 1
 +
**Type 2<sub>2</sub>: 160; 12; 2; 3; 1
 +
*5-colour: 32; 60; 2; 1; 1
 +
*Puzzle orientation constraint: 1 920
 +
*Total pieces: 6 752
 +
*Total stickers: 12 960
 +
 
 +
Number of positions:<br>
 +
((160!/(16!<sup>10</sup>))<sup>2</sup> × (640!/(64!<sup>10</sup>))<sup>2</sup> × 960!/(96!<sup>10</sup>) × (320!/(8!<sup>40</sup>) × 2<sup>320</sup>/2)<sup>2</sup> × (960!/(24!<sup>40</sup>) × 2<sup>960</sup>/2)<sup>2</sup> × (320!/(4!<sup>80</sup>) × 6<sup>320</sup>/2)<sup>2</sup> × 640!/(4!<sup>160</sup>) × 3<sup>640</sup>/3 × (160!/2 × 12<sup>160</sup>/3)<sup>2</sup> × 32!/2 × 60<sup>32</sup>)/1 920 =
 +
<div class="mw-collapsible mw-collapsed">= 348 978 147 675 734 397 587 599 834 224 419 894 359 260 007 318 638 468 132 606 494 363 344 358 560 771 810 852 934 123 506 176 862 670 367 736 239 746 549 410 290 601 903 120 637 765 761 934 845 925 451 607 041 229 123 153 859 891 762 841 583 436 517 158 267 323 407 758 113 179 628 395 710 088 559 917 850 118 861 226 783 220 062 114 465 620 252 639 479 926 940 092 221 549 662 006 344 265 543 326 653 173 209 587 310 222 697 738 159 282 821 900 270 089 929 936 851 057 121 735 229 907 762 635 160 490 393 013 105 805 983 586 402 719 506 513 665 196 686 767 178 023 829 409 791 143 456 660 623 272 242 210 720 813 842 569 225 614 009 248 914 786 090 165 421 824 373 580 618 096 317 670 490 114 439 648 080 485 032 243 537 586 805 856 861 864 082 323 223 320 978 721 321 926 895 946 176 414 732 908 634 126 393 518 646 343 750 358 687 816 566 303 105 514 883 075 033 607 222 142 922 775 144 984 558 431 073 493 817 756 882 100 628 731 724 939 972 466 778 098 556 832 452 778 256 168 697 163 047 438 802 808 683 536 084 215 498 952 606 209 681 931 029 974 194 088 997 837 974 196 341 317 910 884 631 632 851 393 130 106 310 178 669 085 698 828 143 643 296 788 366 107 110 955 412 287 527 165 870 371 050 820 091 878 023 957 711 617 038 397 151 479 951 379 291 274 637 092 666 587 973 145 387 657 561 175 754 882 057 506 586 286 221 011 128 400 506 885 371 246 221 744 298 502 245 041 529 955 664 684 836 694 262 497 704 162 863 062 856 512 584 513 319 904 641 611 922 115 157 588 355 139 703 859 421 387 357 027 445 948 036 135 960 733 266 170 098 696 736 852 857 034 683 730 288 663 796 374 876 564 545 738 846 824 476 917 695 321 714 429 480 917 991 952 027 101 581 600 650 632 811 853 295 476 365 298 234 616 486 989 158 619 924 045 771 560 214 405 077 717 646 479 403 432 720 709 495 362 938 671 931 808 806 986 879 484 365 075 164 430 777 658 861 056 876 660 019 278 916 966 961 251 870 891 336 751 457 406 438 988 353 782 026 156 822 644 044 427 331 755 350 506 784 535 976 707 706 367 740 981 070 751 076 778 382 572 296 609 143 605 081 027 146 680 244 400 428 429 157 699 375 972 524 051 587 885 666 649 841 129 774 576 524 139 563 607 119 636 349 154 073 544 273 421 160 150 930 990 537 931 549 501 968 848 621 630 825 913 369 621 641 472 655 616 942 809 422 322 919 986 168 076 255 988 628 324 422 208 778 421 550 185 618 335 975 549 907 737 658 070 033 814 396 165 463 640 735 705 079 990 291 883 508 684 670 651 617 535 006 767 031 574 534 499 363 211 337 186 180 765 091 077 251 303 503 525 606 442 388 995 229 224 913 553 373 003 148 710 001 336 757 329 693 748 032 281 336 276 727 999 571 689 534 108 383 034 623 694 086 445 757 698 936 185 250 996 134 187 218 669 777 961 187 341 551 448 574 207 915 969 948 226 881 931 213 800 835 489 612 395 324 310 682 906 093 343 900 801 668 948 854 468 996 505 818 059 061 123 678 767 535 495 761 743 395 172 473 651 905 884 929 191 533 970 770 404 899 151 005 151 524 432 562 581 284 960 213 955 655 592 389 663 067 946 157 046 518 948 391 965 567 442 857 680 517 737 781 796 782 545 629 682 937 827 633 744 315 789 708 627 909 256 407 199 100 481 337 100 550 266 299 812 590 551 773 796 572 097 147 888 001 505 382 651 292 760 399 002 735 231 145 369 605 306 136 655 162 009 338 527 037 473 915 175 574 721 556 382 462 896 144 795 171 528 923 081 932 749 085 881 001 798 701 636 210 093 965 954 230 656 913 687 701 995 417 551 843 802 139 750 571 426 440 912 097 669 469 530 869 615 796 993 774 785 564 837 193 971 349 762 289 846 467 132 045 904 581 925 871 097 261 296 655 991 973 461 454 793 059 144 997 501 428 566 606 395 124 870 752 389 469 713 417 034 411 574 448 662 527 965 505 398 578 420 244 296 338 822 713 539 549 150 337 374 120 737 538 325 976 971 554 693 774 848 827 772 752 672 305 383 764 670 666 895 500 883 159 469 570 384 770 767 120 262 928 509 560 748 328 622 638 264 280 380 265 970 771 496 081 456 957 027 000 895 081 688 416 985 140 369 826 084 620 888 348 249 551 107 434 205 579 088 989 617 066 016 601 968 409 698 191 664 795 080 329 406 218 251 402 056 498 309 308 100 800 776 000 692 570 708 267 829 509 540 262 087 382 487 896 320 152 133 579 025 135 640 620 691 762 681 693 865 126 625 464 882 056 731 607 748 328 731 653 304 944 234 457 701 431 541 104 048 532 312 964 846 898 017 589 658 108 902 991 032 258 533 805 008 346 784 171 109 698 892 329 250 521 822 814 313 325 001 264 057 995 428 335 797 789 513 878 772 367 207 613 245 647 034 524 422 852 310 683 146 687 016 964 343 358 024 671 959 334 898 431 925 663 459 141 184 424 183 947 597 763 242 807 146 484 107 353 762 522 750 370 196 407 333 830 749 691 541 669 596 408 625 715 712 817 409 807 659 034 330 847 214 125 901 695 715 305 993 313 735 920 174 530 023 211 308 964 221 661 957 178 307 848 453 989 556 842 419 625 465 511 005 817 022 707 091 881 185 201 976 715 777 197 988 216 736 847 384 587 024 059 807 722 554 348 229 703 771 779 931 479 599 860 203 501 300 742 923 587 071 579 410 913 866 271 812 228 016 461 461 535 998 861 376 592 209 697 182 738 322 463 195 009 443 316 709 173 626 935 368 978 234 846 644 826 052 755 597 471 622 899 509 204 370 891 088 941 814 740 228 665 424 424 658 076 671 486 983 282 962 183 270 063 487 001 459 542 267 779 612 760 949 697 906 788 031 432 034 476 312 827 341 722 909 695 683 395 230 828 883 160 824 825 406 564 823 598 610 724 346 738 221 285 969 198 494 578 557 999 525 485 022 179 524 763 966 572 348 244 083 533 887 286 359 907 815 785 097 740 700 637 749 472 962 730 698 015 873 028 321 630 527 245 517 361 971 883 010 119 433 852 433 753 165 404 223 935 490 927 242 023 533 077 598 428 849 252 973 880 209 582 646 257 522 829 453 877 402 627 920 531 744 620 178 779 913 371 122 428 955 501 578 519 165 677 818 542 476 349 673 046 970 180 145 675 994 397 811 637 941 905 089 655 022 453 359 882 605 710 466 715 929 405 635 214 325 046 916 447 243 760 970 497 186 786 326 621 371 486 089 541 978 025 445 010 385 920 288 992 849 462 205 014 615 656 257 538 104 556 769 865 803 297 562 407 943 159 458 465 590 330 162 861 711 560 114 774 363 049 539 914 754 033 052 298 927 151 080 659 084 131 839 457 644 458 030 674 143 922 407 870 338 597 569 297 679 959 122 602 864 364 759 659 664 880 159 371 871 108 355 024 587 840 893 058 537 778 989 387 604 177 962 022 478 509 826 712 203 077 061 434 692 435 936 827 262 286 613 866 373 689 583 241 524 618 812 261 091 060 637 238 775 668 550 641 875 252 496 595 779 107 235 004 221 728 151 161 068 582 193 136 210 800 982 328 729 059 087 035 269 133 995 677 176 595 745 278 449 679 100 893 623 703 143 831 199 137 750 310 240 361 753 220 395 555 559 187 742 182 736 304 586 412 218 659 573 728 368 250 635 688 132 962 065 366 884 349 770 232 233 741 795 652 025 085 971 236 579 233 893 842 985 626 949 259 418 338 705 394 781 133 000 007 382 693 158 114 692 266 912 691 588 513 511 821 618 793 826 886 297 133 140 407 470 688 657 522 912 603 147 918 689 853 984 090 494 776 774 705 682 761 479 812 814 207 443 027 671 315 049 870 064 804 199 083 397 113 165 541 427 146 835 240 713 215 691 981 369 615 688 402 549 734 865 313 524 343 328 758 114 122 651 859 069 045 497 563 620 738 767 539 220 011 066 053 464 953 223 849 557 987 699 436 382 054 710 893 588 438 538 728 090 790 255 506 441 931 983 272 411 720 141 873 118 289 652 260 562 621 326 958 762 223 423 950 611 806 156 441 110 731 948 886 531 963 002 581 080 140 283 921 244 004 360 458 483 427 644 426 795 724 833 590 579 382 257 052 700 215 226 848 947 899 331 346 200 616 164 985 224 120 589 085 901 275 182 380 943 704 734 896 690 329 089 735 490 437 055 526 662 197 298 757 851 400 968 964 637 097 509 466 342 067 377 668 929 568 214 443 466 219 000 230 345 823 556 390 612 468 928 788 867 839 151 331 863 994 949 555 586 480 020 952 100 821 046 177 799 890 256 036 828 905 358 897 710 386 902 113 015 503 512 919 909 950 360 551 449 159 550 478 723 636 781 976 877 928 897 641 749 669 530 599 730 513 095 113 592 667 461 315 919 182 331 361 348 083 626 297 752 418 875 104 923 523 739 967 626 237 691 390 653 308 474 929 722 370 323 910 192 112 075 196 526 655 650 110 128 402 788 680 879 864 320 680 000 293 268 475 614 134 471 631 627 645 467 527 263 494 380 398 461 799 518 351 538 639 878 554 490 338 034 405 852 136 978 621 932 290 286 987 453 521 426 324 267 711 399 112 645 162 658 521 946 581 522 745 513 944 848 519 968 251 031 115 931 543 830 887 413 841 695 745 824 059 189 098 461 184 423 777 764 979 979 024 612 992 311 864 695 388 645 681 286 660 541 545 229 119 046 428 600 877 003 130 424 253 361 418 060 154 321 295 408 199 503 518 434 933 104 431 476 283 434 511 946 791 630 204 119 855 660 357 288 843 035 311 041 718 153 513 197 954 898 262 661 516 973 989 798 530 693 241 023 923 812 506 457 365 729 233 500 333 067 251 920 010 549 207 194 147 696 357 950 183 801 043 660 888 799 019 216 439 226 243 221 611 056 333 186 644 566 229 104 849 182 715 693 631 557 888 698 829 196 882 135 811 297 098 893 475 892 873 936 804 750 519 589 998 097 031 962 634 064 575 161 079 255 864 561 657 007 104 731 859 149 601 577 783 237 538 740 948 378 270 621 294 435 966 909 071 656 212 071 360 456 419 670 585 493 366 468 754 597 702 075 389 271 166 133 676 406 403 271 308 262 416 504 204 636 275 925 506 829 000 919 296 784 235 185 506 952 355 020 861 348 783 888 543 061 659 031 933 035 116 924 284 270 601 366 757 399 251 339 120 331 603 209 985 476 057 158 585 244 313 848 805 457 185 786 747 073 134 102 035 288 949 628 303 380 179 530 299 374 874 429 466 263 916 734 413 337 222 851 461 196 792 583 204 395 721 625 036 592 434 315 428 003 740 202 343 087 281 163 010 265 398 090 145 151 248 845 745 429 114 976 466 091 141 123 229 166 927 222 350 147 093 992 530 318 433 109 855 033 210 519 166 599 974 958 606 485 318 286 997 009 069 719 663 726 812 385 278 682 804 012 687 857 826 137 911 226 221 797 760 580 076 317 176 622 939 887 010 739 482 324 424 481 028 893 314 397 324 445 266 619 850 471 557 966 943 456 528 638 222 092 982 414 794 165 371 851 879 699 696 055 173 595 259 515 852 424 342 111 128 724 772 873 608 242 772 982 070 342 684 247 023 859 486 524 271 871 596 999 649 512 409 232 818 982 702 819 298 986 889 277 432 645 495 431 776 777 468 832 491 626 769 782 110 732 930 324 598 249 107 862 183 726 664 983 101 440 936 437 298 904 896 045 574 930 893 951 860 087 988 552 471 393 485 411 107 098 813 647 319 882 483 368 908 405 553 625 178 144 393 459 913 112 760 699 115 917 570 683 929 722 761 724 440 757 314 150 250 308 518 646 616 015 834 525 435 864 284 213 052 129 487 454 288 794 886 920 447 659 003 462 588 605 979 211 267 640 069 643 087 636 666 913 011 998 631 971 164 841 827 932 111 670 630 807 873 096 168 682 189 235 112 519 710 081 159 070 580 406 322 551 542 674 644 804 866 239 534 415 188 895 230 820 397 897 713 701 396 525 652 965 247 255 747 968 872 418 707 174 180 871 298 637 847 938 564 572 679 856 067 601 994 608 625 217 151 019 501 989 203 607 656 138 491 898 209 283 621 334 861 768 527 749 819 583 121 055 946 120 830 915 000 461 560 380 058 971 670 950 187 998 548 989 156 832 342 592 000 549 464 340 879 804 089 536 293 018 159 908 878 780 626 794 016 908 138 615 920 344 751 307 931 076 734 451 642 658 710 719 167 575 034 326 710 179 846 994 745 522 683 182 935 072 385 211 718 178 117 469 064 461 813 397 016 437 202 166 044 162 207 507 513 900 735 695 043 116 688 739 506 943 237 809 430 363 754 051 635 116 746 459 188 716 273 053 083 355 206 406 546 839 368 986 503 929 230 485 622 854 603 652 145 231 465 210 592 996 993 376 953 308 254 981 292 485 951 094 582 146 316 706 751 203 496 352 068 560 906 408 582 334 249 112 189 098 156 136 144 518 962 387 521 368 655 097 730 262 285 066 581 635 619 102 947 514 839 458 879 422 710 068 265 867 922 223 223 044 995 280 711 132 905 049 326 523 300 796 452 785 457 620 701 378 191 899 872 883 086 992 335 839 161 061 545 181 420 975 355 157 726 212 779 060 175 167 262 492 119 245 663 117 995 120 857 753 985 947 028 904 026 221 189 162 397 511 365 835 521 762 924 920 001 447 975 681 941 098 681 180 431 625 707 800 233 642 994 050 179 968 994 161 497 083 525 810 145 712 371 520 697 936 583 707 729 859 061 021 274 423 590 955 576 889 372 649 968 410 883 985 738 902 906 116 123 076 507 149 890 151 819 704 336 497 822 689 945 029 038 186 958 497 993 142 078 945 395 221 150 492 683 033 529 071 987 647 257 623 907 144 810 794 557 633 592 002 388 973 384 422 458 878 217 682 933 302 135 613 321 889 548 028 011 882 468 459 008 486 810 414 569 559 279 008 837 327 561 016 523 320 159 724 239 151 768 382 567 872 750 864 519 452 023 099 793 063 718 991 019 383 998 245 420 625 439 284 361 002 351 065 012 382 431 315 128 975 286 671 999 186 712 947 046 188 430 886 112 024 108 681 841 640 405 770 129 674 305 122 593 971 199 777 498 680 559 155 043 180 856 172 664 467 872 724 887 557 220 320 290 501 704 792 786 472 143 189 503 533 716 958 917 799 576 715 831 053 047 802 246 749 099 898 978 698 625 175 721 849 448 128 843 585 063 641 498 661 985 023 929 825 124 875 319 008 049 355 206 207 955 380 757 204 428 693 921 421 623 919 460 673 105 896 042 811 775 811 656 157 195 082 925 041 514 450 927 026 433 628 777 334 010 766 199 388 362 431 757 345 993 405 735 850 418 720 776 613 843 280 221 175 414 323 211 916 624 690 708 627 002 860 830 470 558 694 499 307 310 682 265 766 111 708 912 008 618 784 422 763 486 211 045 035 049 318 863 362 290 595 805 810 603 577 423 778 296 388 314 192 525 425 040 520 181 813 448 972 247 927 899 706 706 983 437 796 255 239 236 477 696 080 934 934 748 445 302 873 676 086 172 598 060 831 687 981 564 598 465 906 342 419 643 001 889 976 758 893 940 335 752 772 232 432 695 413 522 700 153 136 064 243 822 341 854 418 264 135 081 932 555 767 983 039 230 220 683 090 892 262 192 781 921 952 879 836 556 818 220 778 129 942 625 665 544 000 469 145 536 975 314 185 278 741 194 385 821 888 861 223 887 847 114 009 840 354 477 685 346 722 593 609 830 315 140 000 662 970 404 409 325 174 681 117 800 050 200 246 912 354 905 107 023 930 904 533 921 702 164 785 929 458 451 204 579 869 853 406 390 481 963 828 520 039 884 940 624 724 608 569 249 104 990 367 600 078 767 910 440 063 408 615 421 196 036 830 902 315 578 002 305 900 502 173 157 626 153 628 613 684 680 730 404 059 090 476 255 489 248 440 247 910 400 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈</div>
 +
≈ 3.49 × 10<sup>11 441</sup><br>
 +
≈ 348 tremilliduodecioctingentillion 978 tremilliundecioctingentillion (short scale) / 348 millisenongentilliard 978 millisenongentillion (long scale)
 +
 
 +
====Length 7====
 +
 
 +
*1-colour: 6 240 ''(6 250)''
 +
**''(Type 1: 10)''
 +
**Type 2.1<sub>1</sub>: 80; 1; 1; 1; 8
 +
**Type 3.1<sub>1</sub>: 240; 1; 1; 1; 24
 +
**Type 4.1<sub>1</sub>. 320; 1; 1; 1; 32
 +
**Type 5<sub>1</sub>: 160; 1; 1; 1; 16
 +
**Type 2.1<sub>2</sub>: 80; 1; 1; 1; 8
 +
**Type 2.2.1: 480; 1; 1; 1; 48
 +
**Type 2.3.1: 960; 1; 1; 1; 96
 +
**Type 2.4: 640; 1; 1; 1; 64
 +
**Type 3.1<sub>2</sub>: 240; 1; 1; 1; 24
 +
**Type 3.2.1: 960; 1; 1; 1; 96
 +
**Type 3.3: 960; 1; 1; 1; 96
 +
**Type 4.1<sub>2</sub>: 320; 1; 1; 1; 32
 +
**Type 4.2. 640; 1; 1; 1; 64
 +
**Type 5<sub>2</sub>: 160; 1; 1; 1; 16
 +
*2-colour: 5 000
 +
**Type 1: 40; 2; (2); 2; 1
 +
**Type 2.1<sub>1</sub>: 240; 2; 1; 2; 6
 +
**Type 3.1<sub>1</sub>: 480; 2; 1; 2; 12
 +
**Type 4<sub>1</sub>: 320; 2; 1; 2; 8
 +
**Type 2.1<sub>2</sub>: 240; 2; 1; 2; 6
 +
**Type 2.2.1: 960; 2; 1; 2; 24
 +
**Type 2.3: 960; 2; 1; 2; 24
 +
**Type 3.1<sub>2</sub>: 480; 2; 1; 2; 12
 +
**Type 3.2: 960; 2; 1; 2; 24
 +
**Type 4<sub>2</sub>: 320; 2; 1; 2; 4
 +
*3-colour: 2 000
 +
**Type 1: 80; 6; (2); 2; 1
 +
**Type 2.1<sub>1</sub>: 320; 6; 1; 2; 4
 +
**Type 3<sub>1</sub>: 320; 6; 1; 2; 4
 +
**Type 2.1<sub>2</sub>: 320; 6; 1; 2; 4
 +
**Type 2.2: 640; 3; 1; 3; 4
 +
**Type 3<sub>2</sub>: 320; 6; 1; 2; 4
 +
*4-colour: 400
 +
**Type 1: 80; 24; 2; 2; 1
 +
**Type 2<sub>1</sub>: 160; 12; 2; 3; 1
 +
**Type 2<sub>2</sub>. 160; 12; 2; 3; 1
 +
*5-colour: 32; 60; 2; 1; 1
 +
*Total pieces: 13 672 ''(13 682)''
 +
*Total stickers: 24 010
 +
 
 +
Number of positions: (80!/(8!<sup>10</sup>))<sup>2</sup> × (240!/(24!<sup>10</sup>))<sup>2</sup> × (320!/(32!<sup>10</sup>))<sup>2</sup> × (160!/(16!<sup>10</sup>))<sup>2</sup> × 480!/(48!<sup>10</sup>) × (960!/(96!<sup>10</sup>))<sup>3</sup> × (640!/(64!<sup>10</sup>))<sup>2</sup> × (40! × 80!)/2 × 2<sup>40</sup>/2 × 6<sup>80</sup>/2 × (240!/(6!<sup>40</sup>) × 2<sup>240</sup>/2)<sup>2</sup> × (480!/(12!<sup>40</sup>) × 2<sup>480</sup>/2)<sup>2</sup> × (320!/(8!<sup>40</sup>) × 2<sup>320</sup>/2)<sup>2</sup> × (960!/(24!<sup>40</sup>) × 2<sup>960</sup>/2)<sup>3</sup> × (320!/(4!<sup>80</sup>) × 6<sup>320</sup>/2)<sup>4</sup> × 640!/(4!<sup>160</sup>) × 3<sup>640</sup>/3 × 80!/2 × 24<sup>80</sup>/2 × (160!/2 × 12<sup>160</sup>/3)<sup>2</sup> × 32!/2 × 60<sup>32</sup> =
 +
<div class="mw-collapsible mw-collapsed">= 228 761 829 501 391 540 143 218 471 066 070 427 098 377 593 638 274 193 238 972 002 440 125 247 730 178 656 783 730 897 777 498 970 575 932 754 763 408 793 617 321 081 488 138 102 330 503 456 124 922 172 411 363 982 005 030 934 509 940 672 173 528 339 002 794 854 394 792 450 182 539 756 967 204 037 726 781 133 525 925 456 967 524 164 752 274 788 867 952 549 243 560 821 802 858 425 895 965 532 188 432 285 885 861 185 877 199 276 911 185 713 984 792 054 915 439 707 200 889 071 741 762 220 643 479 590 976 789 530 973 518 824 935 214 935 045 853 347 412 057 925 047 215 034 549 317 987 422 967 971 694 837 194 490 196 212 426 305 963 311 071 657 777 997 729 753 381 564 462 432 528 435 898 116 726 966 810 852 114 382 969 211 072 701 652 274 115 644 159 584 739 430 457 038 079 008 779 152 112 189 307 017 085 077 111 631 614 160 229 290 318 915 054 333 515 274 637 471 701 534 292 686 013 754 843 137 281 521 598 386 890 564 677 014 620 779 901 252 020 500 336 003 763 277 874 186 145 252 832 459 085 748 774 756 696 830 351 823 851 863 926 176 134 736 272 678 473 784 768 319 496 238 115 410 460 614 913 900 935 969 524 100 571 768 940 914 986 900 913 637 859 610 287 072 307 719 366 928 067 106 080 572 532 829 689 020 049 591 595 872 059 246 190 988 310 726 055 464 395 463 235 851 195 144 597 555 498 457 762 821 586 912 769 518 623 783 101 948 078 249 716 664 805 700 863 652 024 323 424 065 309 745 072 517 164 863 059 554 920 628 521 556 362 289 313 147 693 648 073 027 827 122 391 490 093 204 905 940 710 724 559 167 443 873 562 886 964 729 042 447 783 069 438 805 754 238 361 741 237 664 859 167 767 671 391 317 086 195 133 935 805 142 120 123 248 285 914 140 525 822 511 886 979 310 288 757 769 060 699 189 907 345 174 095 113 585 537 035 017 096 769 642 504 356 401 110 931 653 851 616 809 799 613 190 066 890 942 713 886 455 008 497 222 998 936 490 005 697 748 598 162 210 775 151 053 125 118 482 294 211 497 328 516 073 688 861 158 176 172 992 339 864 800 760 302 183 763 766 016 381 790 011 419 143 070 193 590 044 073 810 862 509 293 457 337 102 209 213 805 239 633 516 696 205 470 780 189 630 564 620 426 056 060 142 582 228 931 302 046 230 618 843 122 502 495 907 766 514 970 976 955 044 463 118 719 318 309 624 627 832 378 156 211 299 104 147 163 803 066 260 397 723 152 430 001 545 577 497 012 061 150 211 375 746 862 573 991 798 803 514 630 189 076 973 759 830 426 949 782 695 183 364 155 095 818 584 623 511 363 910 310 518 178 631 131 669 059 293 395 331 583 042 820 570 745 876 942 748 891 557 841 049 704 692 490 419 612 926 224 827 290 321 751 389 790 605 728 492 315 538 780 239 017 370 583 405 452 053 569 303 524 924 205 772 783 459 021 693 824 605 841 225 722 004 700 313 663 718 497 499 132 617 585 215 211 485 652 660 894 358 747 792 783 796 332 924 896 476 971 528 697 007 775 376 990 056 612 604 351 845 959 569 815 447 420 667 989 998 459 522 714 755 549 832 513 197 114 001 686 390 451 227 698 456 376 988 589 076 665 754 758 848 799 473 953 609 781 706 269 770 739 230 673 522 828 115 924 852 019 757 036 030 377 867 380 318 061 811 998 504 211 351 072 625 585 342 232 488 219 567 669 157 957 445 095 175 971 489 448 860 119 461 672 298 870 778 050 257 096 595 532 886 666 820 759 301 570 837 900 669 280 255 732 006 346 886 504 265 433 718 385 360 202 522 484 004 721 146 693 790 456 213 262 419 123 134 271 432 385 805 090 240 793 128 992 501 795 207 787 782 546 928 924 651 186 477 029 420 249 473 749 568 539 206 219 442 941 490 828 817 133 408 285 631 987 864 721 298 916 955 385 473 437 942 737 015 556 737 786 872 808 480 422 008 665 231 257 734 266 485 220 178 434 194 702 204 650 187 303 907 010 806 468 287 689 633 004 942 281 699 234 857 140 508 619 238 888 043 478 883 081 920 337 710 822 175 823 717 989 497 549 191 863 542 775 721 482 573 078 002 739 856 229 333 299 924 648 809 693 928 304 740 249 881 089 051 830 353 943 001 311 250 354 959 226 095 765 614 139 932 325 302 156 149 133 587 538 647 759 162 642 860 779 195 494 262 668 395 671 779 283 260 122 374 228 274 759 342 896 066 797 841 036 462 125 681 744 198 362 817 587 337 972 012 331 442 199 441 331 554 509 077 982 987 879 548 494 713 137 633 747 647 824 543 986 346 590 974 449 634 670 581 601 815 635 377 760 751 178 428 268 076 560 006 464 801 924 089 699 589 513 550 877 340 715 237 098 588 169 088 524 005 752 051 608 799 125 118 918 806 488 763 888 776 212 333 586 667 357 780 128 730 506 507 006 821 802 734 214 160 278 218 400 712 770 777 209 802 941 537 681 867 710 333 774 988 307 807 991 520 490 249 325 995 919 990 076 227 749 251 806 668 933 710 073 049 201 757 498 076 820 614 471 042 506 690 751 805 778 926 287 607 174 660 909 887 912 784 822 195 805 720 368 845 304 506 151 454 486 602 405 744 769 268 810 114 612 951 688 418 434 735 428 159 833 517 931 610 287 266 664 822 404 620 753 922 264 641 667 650 132 921 695 314 450 830 613 671 755 241 686 057 745 684 193 152 596 369 527 010 922 884 160 381 317 548 720 330 951 516 584 889 733 949 593 179 692 031 129 228 823 112 214 581 438 085 917 456 401 650 062 118 314 113 088 148 630 469 089 550 367 349 095 347 332 507 000 534 360 380 743 825 403 612 190 887 371 005 629 619 380 928 391 340 350 411 462 198 088 740 095 621 885 627 756 071 657 931 232 305 251 090 071 377 918 474 816 399 075 103 758 551 465 901 615 881 965 579 853 400 856 917 878 732 092 876 158 617 308 535 700 815 779 313 680 706 943 418 630 135 586 100 408 533 379 797 117 045 792 584 869 768 551 182 199 173 126 382 771 065 211 892 425 007 763 866 087 704 588 786 140 094 968 480 355 594 724 085 030 239 656 875 656 004 398 000 192 244 592 035 399 081 802 094 321 716 488 473 674 482 684 345 583 293 839 993 476 019 832 337 714 300 959 490 438 119 998 739 797 005 094 092 471 074 554 412 349 880 978 572 012 864 267 518 102 609 060 620 032 205 010 698 913 005 395 239 513 456 603 639 729 372 349 055 215 931 084 829 911 218 926 255 010 079 187 416 677 194 579 089 397 715 004 284 210 891 130 369 375 992 192 380 966 772 032 742 253 638 791 263 302 473 966 335 528 181 733 315 427 204 008 690 645 824 175 911 606 113 279 000 667 072 345 489 884 907 901 144 890 006 811 427 366 472 804 031 436 716 189 209 832 874 443 653 640 138 281 474 128 106 837 332 316 065 360 451 493 205 908 854 192 517 582 395 969 144 851 810 804 046 663 019 120 725 854 360 789 112 903 437 740 562 380 956 790 344 171 769 055 040 925 638 292 512 735 974 464 671 425 687 262 502 776 009 551 520 343 602 324 531 133 314 811 144 839 410 348 443 037 832 215 430 764 881 772 632 822 035 618 746 944 760 179 807 208 215 082 874 505 917 134 728 063 367 021 016 483 234 996 738 600 774 539 939 403 808 056 518 903 517 232 799 980 077 951 602 658 413 287 620 780 912 924 499 377 664 488 839 286 679 108 314 332 469 542 419 059 033 192 031 009 767 987 536 698 423 007 396 484 456 568 925 105 391 233 446 324 830 387 653 549 159 687 982 675 837 764 944 732 414 695 296 932 442 028 415 284 665 112 392 623 819 194 615 565 923 789 266 280 311 977 035 635 670 050 478 460 119 812 416 079 138 707 740 735 857 968 082 837 803 629 699 947 132 727 435 304 419 015 795 461 867 141 186 995 012 253 924 189 458 225 024 270 341 497 623 873 139 316 733 553 102 587 615 100 939 140 233 107 083 923 584 526 462 719 309 960 439 383 238 068 898 691 607 691 934 624 701 452 588 611 518 468 583 562 813 550 543 246 364 740 989 761 789 745 688 335 122 900 406 183 998 852 029 906 960 802 894 042 110 834 284 575 891 932 088 434 046 604 147 516 927 640 795 251 784 535 359 412 826 736 750 123 188 759 354 079 521 458 418 905 974 460 942 879 509 480 518 761 606 263 171 678 909 728 183 193 358 499 214 024 381 054 434 928 868 569 157 323 980 211 045 210 705 243 698 329 231 215 019 635 278 845 469 393 034 738 635 203 811 867 705 937 542 879 748 018 895 163 729 570 365 182 077 244 767 743 681 736 501 362 564 526 045 497 502 564 988 881 227 469 334 059 232 212 641 037 422 470 396 451 595 990 945 659 776 232 655 156 629 933 792 871 270 457 764 070 926 555 941 427 678 232 439 174 703 811 051 840 243 588 279 948 621 619 540 350 993 382 857 271 269 397 081 290 909 600 673 035 899 733 939 013 944 254 890 383 879 005 204 265 711 898 894 905 434 185 891 589 041 264 881 793 685 274 774 029 037 423 996 210 604 109 294 364 105 527 423 002 442 798 789 130 541 303 490 991 097 871 535 146 358 828 223 917 456 331 677 107 025 900 156 869 034 997 089 801 455 154 935 506 201 266 362 217 892 521 513 390 506 904 120 511 145 697 030 361 894 687 318 673 283 841 706 934 764 403 490 575 571 192 045 188 247 741 379 873 681 425 794 005 365 209 515 694 095 083 733 772 481 532 548 578 043 866 889 675 734 716 582 766 318 234 038 959 426 925 890 124 643 487 208 425 061 973 527 908 183 395 899 701 785 919 029 133 404 942 866 997 735 287 189 837 181 274 684 541 472 826 332 003 414 039 970 316 465 104 168 988 933 211 865 539 648 774 829 004 519 096 573 135 032 892 251 793 813 316 610 595 916 204 766 059 096 813 261 190 505 519 928 610 775 676 877 817 075 959 584 939 308 707 756 426 177 976 384 812 238 294 225 143 257 797 906 451 346 707 973 036 372 910 897 066 948 097 015 208 082 890 921 368 952 467 760 430 499 690 014 864 333 878 312 358 054 745 041 588 068 850 630 466 275 336 399 603 324 341 800 009 042 362 657 988 859 250 331 416 132 847 971 508 000 620 768 475 916 078 031 682 624 781 056 256 121 503 199 722 887 554 653 199 494 330 597 048 602 507 034 413 564 425 497 806 437 233 026 871 674 334 407 454 341 020 763 475 257 639 571 624 376 904 723 501 882 485 560 429 638 640 394 105 640 428 428 146 784 300 384 668 022 767 618 209 558 446 088 202 893 566 969 517 246 838 671 111 255 528 504 002 923 892 534 014 449 190 700 456 947 853 196 235 871 048 004 275 479 811 901 629 415 848 524 414 045 243 576 347 158 870 996 026 433 544 524 896 536 555 765 800 882 726 484 449 464 937 640 998 907 792 502 889 254 747 130 837 604 772 880 037 886 779 122 913 227 528 332 850 022 718 185 471 925 174 541 455 108 412 577 769 693 303 795 791 123 856 297 256 591 374 741 617 839 484 260 866 604 201 361 901 940 916 222 516 232 239 312 265 691 403 686 765 586 395 919 545 168 759 990 894 636 658 418 955 569 831 727 380 687 429 515 349 781 640 584 851 325 991 341 805 105 557 563 641 758 845 818 084 129 938 530 435 128 128 315 024 995 524 290 385 777 596 779 189 641 003 795 183 727 191 494 156 518 677 572 132 069 651 303 030 339 914 430 800 545 774 057 004 383 383 228 843 770 332 975 818 551 761 478 098 261 335 369 563 489 205 191 507 070 521 023 126 487 096 506 685 437 189 721 556 018 717 040 403 015 263 158 859 621 090 210 138 119 851 817 958 429 824 885 581 686 217 694 462 574 851 805 809 459 487 552 805 262 575 850 127 421 193 676 302 396 581 235 601 415 422 849 260 012 020 539 751 145 032 107 368 535 386 684 475 983 784 401 861 485 898 268 897 206 645 649 544 251 411 066 987 642 926 053 187 206 547 474 477 178 999 648 393 795 750 655 460 308 029 233 714 957 200 642 334 479 398 606 026 117 765 449 048 327 109 772 851 983 346 621 946 998 984 779 946 531 652 735 518 189 886 282 941 607 831 368 696 323 762 495 418 635 964 822 314 253 317 781 789 024 468 837 135 930 729 339 664 352 931 494 306 445 220 633 301 988 015 697 563 302 324 796 951 602 554 451 711 541 944 363 674 169 797 229 102 057 532 663 340 792 036 020 402 726 526 429 842 276 080 680 140 249 154 040 124 365 429 817 956 329 551 217 339 013 293 167 771 856 227 951 357 659 656 793 559 347 266 615 555 507 754 068 369 483 365 588 131 073 655 202 223 360 713 998 050 870 556 093 968 175 535 771 252 476 326 025 880 254 614 528 647 966 361 181 184 280 916 387 128 530 733 498 231 173 387 058 613 629 260 047 522 324 453 775 561 027 967 830 951 785 419 118 000 167 701 839 068 241 802 383 673 421 461 704 944 491 165 918 045 326 573 059 019 237 420 029 029 724 618 344 107 312 475 333 954 054 686 786 468 250 097 482 235 095 127 615 336 613 687 693 541 736 702 242 265 339 102 885 942 933 178 996 450 904 946 793 855 961 390 337 273 083 102 272 585 074 918 360 658 503 829 439 342 059 674 240 768 962 780 588 511 169 680 811 290 744 112 106 285 217 763 703 486 073 469 970 365 352 588 301 807 759 918 246 114 984 328 984 827 415 390 848 649 805 310 077 431 427 480 899 712 635 798 888 453 246 825 463 356 587 289 054 680 185 870 369 275 645 989 680 284 863 684 355 800 641 452 793 482 871 903 415 035 373 557 729 160 227 809 362 905 904 340 993 944 152 849 597 368 393 823 520 269 113 358 511 086 282 703 565 577 488 865 629 050 911 779 282 963 321 423 205 445 814 636 526 853 012 857 081 885 740 344 975 846 402 372 843 222 383 262 192 659 548 244 988 963 535 825 813 879 611 867 330 514 110 828 916 539 532 725 812 898 650 966 923 250 298 277 194 909 078 584 038 915 096 949 459 013 825 767 599 105 237 253 037 097 174 985 701 793 558 849 986 871 357 969 520 130 767 698 761 741 962 534 332 923 711 216 516 010 014 065 512 308 175 702 207 507 587 831 740 315 694 251 002 707 875 791 083 990 344 626 419 562 174 423 836 948 495 651 658 948 632 944 034 551 898 025 895 010 048 843 086 933 968 186 165 016 848 959 232 536 304 648 249 145 715 445 384 785 785 088 777 272 251 314 749 637 432 343 450 630 387 324 796 845 842 997 312 288 141 247 006 529 372 931 502 018 090 148 330 143 142 815 894 389 924 886 820 671 250 873 004 464 531 617 098 583 920 636 376 741 352 448 617 029 859 246 944 081 276 342 081 125 425 884 785 188 861 044 449 585 902 133 297 452 177 119 976 749 311 977 288 600 055 398 160 120 057 060 658 284 884 789 156 518 719 532 607 997 087 706 402 817 462 601 966 331 388 930 757 730 900 495 869 468 656 750 739 413 947 202 201 224 578 952 645 499 027 574 182 866 878 556 788 139 648 683 230 427 686 600 841 831 004 133 318 607 898 561 689 752 158 831 981 257 644 462 724 410 755 307 228 415 781 722 766 547 785 856 410 712 106 909 739 897 435 352 471 056 733 238 449 245 384 805 956 307 245 258 130 904 909 096 623 101 271 984 765 975 301 804 178 805 436 187 669 320 021 259 634 128 858 981 890 981 472 160 378 038 915 870 617 914 311 279 461 818 510 726 533 908 559 400 859 118 255 978 729 406 338 088 140 790 358 944 304 272 319 650 626 671 846 105 379 025 706 832 466 541 393 191 456 725 683 164 080 142 723 197 748 861 338 147 388 491 496 498 920 657 761 518 312 641 310 742 641 382 886 003 189 651 281 283 776 774 175 246 472 305 821 100 072 343 091 394 901 809 522 565 472 169 752 331 304 562 839 603 617 479 298 606 639 116 748 474 237 046 042 699 128 240 145 330 971 087 550 178 964 211 198 688 543 679 707 769 543 270 590 914 137 595 473 867 210 292 882 255 047 373 658 424 561 216 757 094 248 040 804 358 567 810 668 332 096 088 844 642 303 104 271 910 218 372 923 764 808 198 818 007 606 263 468 085 629 200 498 793 005 964 882 552 452 280 964 762 051 352 437 271 330 538 773 585 001 684 008 669 907 896 737 000 348 445 948 458 731 648 240 737 707 912 221 216 200 107 029 034 179 204 128 262 630 930 231 211 393 873 735 536 567 955 595 003 490 144 226 324 647 868 019 699 117 265 394 874 334 590 845 334 243 312 275 708 282 944 860 267 113 291 035 757 221 790 093 204 449 993 817 798 200 957 991 500 323 990 350 936 730 028 716 983 780 564 781 877 169 863 640 540 775 513 238 000 686 210 152 506 244 926 174 848 976 004 524 422 290 145 495 982 659 227 362 245 229 131 250 405 610 673 982 750 188 588 299 059 663 970 403 399 660 557 156 316 449 951 313 623 144 628 621 098 496 076 801 632 145 551 274 649 840 895 079 599 337 817 157 500 160 525 460 378 206 882 239 491 128 627 054 714 913 634 691 462 934 567 328 911 213 344 096 910 306 606 586 478 807 226 337 362 475 476 472 565 376 784 792 762 311 426 842 803 432 902 159 746 776 572 267 252 658 607 604 628 232 647 008 732 274 172 093 819 054 231 246 805 163 689 219 177 020 302 523 896 016 084 433 142 509 630 489 047 166 645 670 983 463 407 940 114 715 688 605 009 611 586 305 174 947 201 095 319 470 020 278 955 319 871 801 309 301 532 223 047 739 264 386 790 472 465 814 247 222 532 807 305 294 227 905 891 403 412 353 514 402 163 072 755 282 636 829 738 131 838 637 093 080 859 715 531 525 864 130 382 770 042 442 444 079 367 951 835 409 980 185 078 432 485 885 446 934 135 380 445 361 018 469 040 617 666 069 519 664 518 860 065 932 154 561 334 530 797 896 338 241 043 876 567 123 190 789 360 222 551 360 164 969 443 275 028 280 883 859 773 206 754 717 097 286 359 517 927 476 210 498 803 895 674 479 990 341 171 512 039 014 787 901 713 651 192 842 944 811 358 098 039 357 297 100 099 638 848 938 552 091 394 839 039 712 730 678 847 975 329 637 503 652 486 530 920 216 500 427 667 369 406 530 818 200 619 367 770 278 495 290 992 068 032 963 422 821 539 835 817 967 636 508 581 611 251 187 905 956 137 176 600 008 682 924 871 894 811 163 972 512 047 663 921 094 189 344 415 128 805 539 539 198 284 466 071 335 297 563 324 514 160 976 637 196 447 869 321 854 174 148 862 062 594 025 740 573 262 323 643 684 745 685 782 677 871 691 187 385 616 668 979 028 056 648 444 775 752 713 812 557 416 944 557 702 871 972 590 877 207 407 144 664 995 521 234 301 514 073 980 776 539 442 431 734 429 403 299 583 951 838 289 796 331 007 283 179 390 344 673 687 114 489 229 103 964 281 288 786 170 023 267 798 311 290 771 258 600 966 506 280 955 002 923 917 924 611 514 938 946 975 098 500 568 130 221 979 220 319 284 286 579 424 764 610 432 373 693 847 920 124 180 643 723 781 530 976 573 224 088 826 307 739 394 087 336 542 247 095 068 949 703 274 615 616 064 252 882 526 566 200 114 473 090 219 536 244 693 399 766 962 073 385 513 829 378 494 830 140 645 089 928 112 912 943 415 800 401 888 840 488 984 825 876 069 961 972 210 718 900 542 436 587 910 145 841 059 385 374 347 566 536 987 172 390 795 910 080 527 754 450 074 975 487 242 046 462 065 273 454 079 998 710 464 235 780 538 225 070 694 297 455 935 256 266 174 603 059 357 459 057 396 274 431 377 497 728 505 764 362 894 506 541 147 127 856 687 997 425 903 495 158 722 283 082 783 756 671 031 596 944 675 456 885 399 810 151 245 841 566 063 763 791 445 786 199 271 524 367 792 524 168 973 941 591 358 035 828 440 099 360 441 811 544 056 758 537 744 089 247 541 473 251 764 353 644 382 833 289 918 184 770 111 345 268 652 901 306 957 715 584 425 370 891 415 147 997 163 289 429 929 413 862 353 667 231 083 286 645 600 357 447 187 841 909 451 571 211 457 459 886 235 738 126 906 586 129 274 470 272 348 803 922 363 842 730 032 218 362 906 503 591 945 642 629 302 678 487 787 253 252 481 024 542 866 223 748 553 666 072 752 535 180 514 389 181 198 189 694 394 054 666 730 802 518 004 842 547 495 857 525 777 489 126 051 635 541 534 411 086 777 385 524 584 027 420 658 739 675 959 535 955 958 410 824 635 073 917 590 517 103 251 503 232 697 730 863 180 650 650 967 714 289 995 966 549 027 942 213 868 541 244 065 517 247 173 843 902 994 997 704 579 513 402 847 466 015 875 075 928 175 869 905 517 426 991 942 988 038 389 337 447 623 640 772 131 131 875 746 572 123 000 812 435 942 924 930 945 842 102 853 099 491 882 576 695 064 745 985 539 159 682 256 792 166 258 026 498 620 246 302 952 061 983 344 115 553 359 418 104 205 260 298 748 675 099 019 565 645 586 524 409 018 321 388 885 224 764 627 064 357 953 653 117 093 753 378 026 720 787 458 562 695 508 881 266 536 871 336 597 066 532 318 358 058 099 170 828 603 739 551 974 351 649 254 018 417 151 835 023 545 959 320 532 694 834 114 382 351 303 660 299 333 947 590 129 160 508 693 765 750 156 256 399 428 694 972 854 119 930 036 704 427 455 388 891 050 501 099 515 404 790 951 544 125 739 176 313 109 789 309 663 635 031 390 225 030 393 938 539 321 087 197 703 440 630 483 242 797 152 069 240 610 461 517 076 854 496 724 307 018 558 493 794 178 993 218 448 845 018 513 796 352 359 782 535 844 723 398 786 759 415 399 738 326 760 598 808 226 745 395 252 030 898 779 810 474 834 418 478 439 792 786 448 445 119 987 861 438 033 498 866 848 708 469 838 403 386 224 747 981 695 891 439 845 026 712 001 046 722 010 529 925 786 574 912 219 329 795 425 991 232 912 612 050 555 050 225 617 925 032 471 248 668 560 295 120 072 401 094 704 565 417 061 270 962 833 583 022 547 048 699 948 377 341 450 717 049 822 066 967 458 033 524 290 455 091 723 077 650 331 325 768 174 275 329 121 081 123 557 463 490 135 868 437 520 830 429 570 004 410 434 212 736 423 703 713 645 007 107 024 905 100 957 031 215 428 809 987 682 876 061 517 991 596 701 607 212 570 646 344 532 775 759 911 152 211 007 517 187 595 078 844 604 728 587 938 535 635 147 294 558 272 788 152 777 396 096 314 393 202 245 202 137 469 750 503 502 313 850 225 306 828 107 349 120 341 693 305 257 462 387 045 536 167 157 929 645 206 641 042 511 167 373 645 155 317 765 507 664 598 693 424 339 136 100 841 174 461 682 201 123 022 177 347 638 112 002 248 215 252 804 309 082 495 495 428 289 010 089 915 889 070 598 159 323 924 117 555 193 302 882 261 714 414 972 624 779 879 754 042 694 275 840 402 077 471 040 188 670 822 661 508 727 603 315 931 416 042 390 506 701 221 554 151 246 681 137 051 143 227 352 236 407 791 702 503 411 163 958 505 250 562 489 991 276 991 228 776 272 815 762 002 625 208 274 996 779 585 576 355 914 293 564 429 748 305 732 319 281 900 761 344 127 212 915 891 049 028 210 064 487 721 516 645 593 830 663 539 428 318 398 690 651 048 097 761 100 905 809 116 254 432 791 857 722 347 588 780 146 312 378 688 517 016 907 015 434 217 774 778 609 364 156 776 168 229 252 977 606 261 862 899 870 710 349 725 933 200 537 714 449 248 057 694 132 704 278 092 522 199 974 800 955 100 264 380 701 180 367 358 371 559 213 857 067 974 201 722 026 268 923 910 471 586 748 288 141 724 619 852 224 742 932 283 987 207 074 762 328 106 110 953 364 977 023 995 510 752 179 809 513 779 314 495 107 287 575 197 386 130 459 658 555 877 544 264 988 263 360 279 270 135 598 136 150 709 741 441 348 611 439 363 139 735 857 306 886 300 919 150 517 407 098 214 449 285 805 000 084 152 686 556 845 784 750 316 612 505 319 516 013 108 903 778 917 473 541 433 529 707 149 358 393 069 189 061 606 161 562 135 890 107 038 845 182 274 866 847 403 860 510 130 527 346 157 538 093 605 139 426 994 611 228 761 713 781 054 042 430 066 660 045 084 901 271 862 944 793 260 504 599 582 193 774 203 977 139 847 419 072 218 544 676 605 772 492 980 793 183 180 050 452 941 345 187 914 181 319 169 987 155 993 412 392 779 743 181 176 248 030 038 143 085 378 922 166 200 516 229 399 879 385 712 010 964 973 170 554 941 892 720 835 949 364 415 468 665 977 935 226 920 020 568 477 666 381 512 730 840 766 093 369 413 377 835 566 801 806 364 387 585 235 698 556 844 463 536 014 748 420 030 056 647 700 237 199 821 067 492 555 758 820 847 272 428 294 803 377 023 782 750 375 435 500 611 634 951 904 253 560 550 195 568 851 306 146 322 332 378 779 076 362 216 978 681 209 104 714 682 189 162 833 253 247 762 586 326 203 035 387 628 461 182 616 934 985 600 955 728 041 370 133 004 089 606 567 315 304 565 002 591 009 610 005 215 836 622 498 178 311 057 085 554 775 319 349 122 780 508 462 452 120 382 847 426 840 752 304 612 030 669 700 792 329 733 997 362 732 012 685 679 083 883 659 281 363 611 724 357 794 243 294 746 810 949 690 714 256 863 789 361 793 789 687 496 657 750 656 075 205 705 884 577 412 207 905 874 913 990 893 342 839 092 221 685 576 886 402 135 002 454 590 241 943 837 460 129 188 792 712 763 378 445 754 579 796 315 065 282 422 731 243 963 240 195 614 687 838 001 467 072 753 189 770 174 510 166 500 831 962 173 912 753 955 657 682 589 828 453 298 950 013 421 161 422 514 382 247 146 789 983 462 376 465 105 249 809 906 068 207 761 741 611 696 879 468 498 224 553 432 381 931 023 903 298 701 783 971 760 707 776 384 356 471 316 999 837 738 809 116 279 952 161 544 364 798 464 287 494 892 102 705 277 808 971 011 034 042 855 775 795 300 434 822 251 719 949 925 958 847 385 543 668 003 438 433 758 107 432 680 330 371 275 075 930 384 026 035 648 246 295 056 169 705 585 687 335 067 200 674 448 572 655 487 104 612 768 750 991 161 504 048 947 684 869 390 011 550 786 242 321 193 867 108 961 235 791 085 445 231 804 660 046 283 965 999 106 736 357 845 145 881 924 923 836 164 459 626 889 531 287 928 576 767 660 155 310 683 582 279 090 688 943 522 515 083 742 812 199 522 099 343 637 728 273 241 109 172 596 607 536 301 051 138 320 160 539 606 778 714 618 142 642 112 698 875 080 018 264 552 041 939 081 703 025 591 387 571 709 132 596 810 863 869 462 112 854 214 082 007 018 360 969 369 348 153 807 498 117 805 019 334 068 464 587 625 950 235 871 728 161 236 884 408 468 221 368 946 303 443 847 734 015 102 667 523 103 476 630 705 228 412 464 517 733 285 483 909 681 629 327 393 127 621 415 681 328 414 971 916 452 331 978 373 612 839 452 791 218 251 136 481 421 396 345 063 005 418 698 652 126 683 791 320 024 947 721 497 588 148 668 382 146 054 146 761 942 314 922 613 115 452 233 445 987 585 215 886 777 722 698 000 177 693 138 818 618 184 616 490 826 809 008 910 041 631 744 329 156 812 188 014 194 948 449 135 325 452 370 901 554 546 919 029 835 592 253 393 546 664 392 053 520 339 712 239 672 337 620 927 532 755 150 769 781 074 611 482 901 783 800 239 512 675 754 474 220 268 085 673 269 603 622 897 033 141 778 093 600 903 666 565 666 518 218 929 433 083 109 033 598 028 194 377 504 750 831 519 505 393 095 355 916 868 954 344 835 676 204 675 488 688 239 024 941 776 715 487 216 873 880 901 184 044 111 055 811 742 845 565 597 536 068 680 649 339 212 203 735 455 383 130 149 958 497 644 002 206 765 949 826 804 202 443 719 332 097 115 752 296 330 688 643 126 489 153 178 963 787 682 314 487 003 739 545 697 115 318 838 142 220 056 753 217 158 381 109 388 277 098 098 150 942 623 433 164 806 692 275 828 373 936 469 715 192 463 663 021 886 153 655 391 004 158 939 660 461 765 841 733 435 779 856 324 158 454 445 809 155 374 417 974 535 964 288 492 307 580 105 027 036 118 776 644 960 306 324 668 510 997 140 159 424 561 574 417 194 472 071 950 610 173 489 345 463 090 033 225 889 525 129 786 864 065 650 512 268 702 392 944 318 408 070 113 692 515 346 368 303 717 862 726 657 930 426 308 300 446 470 391 607 703 704 259 875 724 339 190 696 553 957 014 733 982 719 265 574 827 213 911 490 072 342 144 758 109 505 983 498 357 377 621 329 670 408 239 224 747 376 025 315 836 121 622 526 477 400 565 922 992 618 285 156 411 075 784 705 617 039 020 933 472 243 312 224 693 474 405 197 762 440 238 836 606 494 444 480 087 222 268 235 681 469 358 877 931 146 941 531 080 946 285 676 102 564 875 128 470 615 337 273 912 695 267 141 965 464 129 421 684 452 588 905 141 845 782 166 828 483 970 442 878 546 465 677 976 727 772 797 784 197 502 175 926 750 256 547 283 952 956 459 631 614 255 039 129 888 480 315 049 850 767 570 629 821 330 761 814 641 719 839 257 911 351 915 537 515 064 971 670 605 706 142 132 902 335 255 058 965 685 752 794 627 304 304 463 764 380 563 372 751 939 153 157 997 517 315 260 644 717 743 680 031 015 627 970 395 716 860 765 639 188 390 925 881 494 779 445 973 354 002 896 669 980 000 530 396 784 410 834 143 734 822 872 656 355 171 484 958 560 870 013 351 975 894 060 960 765 791 591 874 965 695 846 888 157 889 238 314 151 117 166 610 301 562 570 570 898 787 526 322 602 450 483 567 586 213 011 490 165 696 823 364 297 178 691 140 991 597 069 072 168 305 455 082 341 854 986 895 360 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈</div>
 +
2.29 × 10<sup>21 503</sup><br>
 +
228 septemillisesexagintacentillion 762 septemilliquinquasexagintacentillion (short scale) / 228 tremillitresoctogintaquingentilliard 762 tremillitresoctogintaquingentillion (long scale)

Revision as of 06:02, 30 March 2019

Note: This page is under construction.

This page lists some mathematical properties of multi-dimensional puzzles, mostly numbers of their positions.

There may be non-mathematicians reading this, so here is an introduction to these issues; however, some calculations may be of more advanced level:
If we have a pieces, we can permute them a! ways; this can be easily shown: Suppose we remove all the pieces. If we are placing the first one, there are a ways to do so. For the second piece, there are, however, only a − 1, since one is already occupied by the first piece, and both these pieces have together a × (a − 1) permutations as there are a − 1 positions of the second piece per each of the a positions of the first piece. If we continue this way, it becomes clear that there are a × (a − 1) × (a − 2) × ... × 3 × 2 × 1 (we actually have no choice for the last a-th piece), which is conventionally denoted as a!.
Now, each of the a pieces can be oriented b if it stays in place. This means that there will be ba ways to only orient the pieces if we do not permute them, because there are b orientations of the first piece per b orientations of the second piece etc.
Multiplying these numbers should give us the total number of a puzzle’s positions (there are ba orientations per each of a! permutations), but it often happens that not all of them are reachable by using legal moves, and we have to divide this figure due to constraints (if the pieces’ permutations have given parity, the permutation constraint c = 2 because only half of the permutations are attainable. With regard to orientations, we can say that all but last pieces have ba − 1 orientations in total and it may happen that the last piece cannot reach all orientations, so it has only b/d, where d is the orientation constraint. Also, if there are some pieces that are not distinguishable from each other and we swap them, the change will not be visible, and we therefore regard them as the same position. If there are sets of e indistinguishable pieces, we have to divide by e!a/e as a consequence, because the e! possible permutations of a set are not distinguishable and there are (logically) a/e such sets).

The general structure of the data presented here is of this form:

  • n-colour pieces type X: count (a); number of orientations (b); permutation constraint (c); orientation constraint (d); indistinguishability constraint (e)

The position count of a row is then a!/(c × e!a/e) × (ba)/d.
Number of positions of the whole puzzle is the product of position counts of all its rows.

The pieces are divided first by number of colours and then by types, which are determined by orbits – a piece in a given type can reach the positions of all other pieces in that type by legal moves.
The types are listed in such order that they go “from centre”.
They are named based on which feature of the shape are they in, so for example on tesseract, “1-colour type 1.3” means that it is on face (1) of a cube and on that face it is in the corner (3). “Two-colour type 2.2” signifies that it is on edge of a square and that it is alternative (2; just to distinguish between it and type 2.1, because they behave differently). Subscripts are added to number pieces which would get the same type.
When listing general properties of a class of puzzles, it is first noted how many times does the type appear.

Values in parentheses are a “common constraint”, and are counted as one. This happens when more types of pieces have a given parity together, so that one may for example perform only odd permutations of both or even permutations of both. This results in c = 2, counted only once despite applying to more types.
When is a whole type or number of some pieces is in parentheses and italics, it means that (some of) those pieces are there, but are immobile. By “mobile”, I mean permutable and/or orientable, that is, mobile are pieces that can change their state.
Numbers of pieces in square brackets denote the impossibility of permuting this type of pieces.

Some puzzles have no fixed reference points, and it is necessary to include a “puzzle orientation constraint”, because we counted all its positions in all of the puzzle’s orientations. This constraint is equal to the number of orientations of the whole m-dimensional shape, which can be easily calculated as the number of m-faces multiplied by the number of (m − 1)-faces in each m-face multiplied by number of (m − 2)-faces in each (m − 1)-face multiplied by ... multiplied by the number of 1-faces in each 2-face (x-face is x-dimensional part of the shape). This can also be viewed as fixing one piece in place.

Numbers in this page are named according to Conway’s and Guy’s naming scheme extended in Saibian’s fashion when necessary.

Calculated by Jakub Štepo unless stated otherwise. I do not guarantee the correctness of my results and some may be unverified, so feel free to correct or add content.

MagicCube4D

{3,3,3}

  • Shape: Regular 5-cell (pentachoron)
  • Cells (colours): 5 regular tetrahedra {3,3}
  • Faces: 10 equilateral triangles {3}
  • Edges: 10
  • Vertices: 5

Length 2

  • 4-colour: Type 1: [5]; 12; 1; 1; 1
  • (5-colour: 1)
  • Total pieces: 5 (6)
  • Total stickers: 25

Number of positions:
125 =
= 248 832 ≈
≈ 2.49 × 105
= 248 thousand 832

Length 3

  • 3-colour: Type 1: 10; 6; 2; 2; 1
  • 4-colour: 10
    • Type 1: [5]; 12; 1; 1; 1
    • Type 2: [5]; 12; 1; 1; 1
  • Total pieces: 20
  • Total stickers: 70

Number of positions:
10!/2 × 610/2 × (125)2 =
= 3 396 471 743 308 934 991 052 800 ≈
≈ 3.40 × 1024
≈ 3 septillion 396 sextillion (short scale) / 3 quadrillion 396 trilliard (long scale)

Length 4

  • 2-colour: Type 1: 10; 2; 2; 2; 1
  • 3-colour: 30
    • Type 1: 10; 6; 2; 2; 1
    • Type 2: 20; 3; 2; 3; 1
  • 4-colour: 10
    • Type 1: [5]; 12; 1; 1; 1
    • Type 2: [5]; 12; 1; 1; 1
  • Total pieces: 50
  • Total stickers: 150

Number of positions:
10!/2 × 210/2 × 10!/2 × 610/2 × 20!/2 × 320/3 × (125)2 =
= 4 460 971 667 252 991 547 434 208 214 041 871 442 189 607 102 945 689 600 000 000≈
≈ 4.46 × 1060
≈ 4 novemdecillion 461 octodecillion (short scale) / 4 decillion 461 nonilliard (long scale)

Length 5

  • 1-colour: Type 1: 5; 1; 2; 1; 1
  • 2-colour: 40
    • Type 1: 10; 2; 2; 2; 1
    • Type 3: 30; 2; 1; 2; 3
  • 3-colour: 50
    • Type 1: 10; 6; 2; 2; 1
    • Type 21: 20; 3; 2; 3; 1
    • Type 22: 20; 3; 2; 3; 1
  • 4-colour: 10
    • Type 1: [5]; 12; 1; 1; 1
    • Type 2: [5]; 12; 1; 1; 1
  • Total pieces: 105
  • Total stickers: 275

Number of positions:
5!/2 × 10!/2 × 210/2 × 30!/(3!10) × 230/2 × 10!/2 × 610/2 × (20!/2 × (320)/3)2 × (125)2 =
= 891 244 004 975 919 897 976 748 360 350 536 026 444 717 921 800 196 028 281 830 709 220 726 284 058 861 218 760 784 054 113 171 564 134 400 000 000 000 000 000 000 ≈
≈ 8.91 × 10122
≈ 891 noventrigintillion 244 octotrigintillion (short scale) / 891 vigintillion 244 novendecilliard (long scale)

{4,3,3}

  • Shape: Tesseract
  • Cells (colours): 8 cubes {4,3}
  • Faces: 24 squares {4}
  • Edges: 32
  • Vertices: 16

Length n, n ≥ 2:

  • 1-colour: ((n − 2)3n mod 2) × 8 ((n − 2)3 × 8)
    • (Type 0: 8 n mod 2)
    • Type 1.1: 48; 1; 1; 1; 6; × (n − 3)/2 × n mod 2
    • Type 1.2.1: 192; 1; 1; 1; 24; × (n − 5)(n − 3)/2 × n mod 2
    • Type 1.2.2: 192; 1; 1; 1; 24; ×⌊(‘'n − 6)/2⌋⌊(n − 4)/2⌋⌊(n − 2)/2⌋/3
    • Type 1.3: 192; 1; 1; 1; 24; × ⌊(n − 4)/2⌋⌊(n − 2)/2⌋/2
    • Type 2.1: 96; 1; 1; 1; 12; × (n − 3)/2 × n mod 2
    • Type 2.2: 192; 1; 1; 1; 24; × ⌊(n − 4)/2⌋⌊(n − 2)/2⌋/2
    • Type 3: 64; 1; 1; 1; 8; × ⌊(n − 2)/2⌋
  • 2-colour: (n − 2)2 × 24
    • Type 1: 24; 2; 2; 2; 1; × n mod 2
    • Type 2.1: 96; 2; 1; 2; 4; × (n − 3)/2 × n mod 2
    • Type 2.2: 192; 1; 1; 1; 4; × ⌊(n − 4)/2⌋⌊(n − 2)/2⌋/2
    • Type 3: 2; 1; 2; 4; × ⌊(n − 2)/2⌋
  • 3-colour: (n − 2) × 32
    • Type 1: 32; 6; 2; 2; 1; × n mod 2
    • Type 2: 64; 3; 2; 3; 1; × ⌊(n − 2)/2⌋
  • 4-coloured: 16; 12; 2; 3; 1; × 1
  • Puzzle orientation constraint: 192; × (n + 1) mod 2
  • Total pieces: n4 − (n − 2)4 - n mod 2 (n4 − (n − 2)4)
  • Total stickers: 8n3

Number of positions:
((((48! × 96!2 × 296)/(6!8 × 12!8 × 4!24 × 2))(n − 3)/2 × (24! × 32! × 224 × 632)/(23))n mod 2 × (192!/(24!8))(n − 5)(n − 3)/2 × n mod 2 + ⌊(n − 4)/2⌋⌊(n − 2)/2⌋⌊n/2⌋/3 × ((64!2 × 364)/(8!8 × 2 × 3))⌊(n − 2)/2⌋ × (192!/(4!48))⌊(n − 4)/2⌋⌊(n − 2)/2⌋/2 × (16! × 1216)/(2 × 3))/(192(n + 1) mod 2)

Length 2

  • 4-colour: 16; 12; 2; 3; 1
  • Puzzle orientation constraint: 192
  • Total pieces: 16
  • Total stickers: 64

Number of positions:
(16!/2 × 126/3)/192 =
= 3 357 894 533 384 932 272 635 904 000 ≈
≈ 3.36 × 1027
≈ 3 octillion 358 septillion (short scale) / 3 quadrilliard 358 quadrillion (long scale)

Length 3

  • ’'(1-colour: Type 0: 8)
  • 2-colour: Type 1: 24; 2; (2); 2; 1
  • 3-colour: Type 1: 32; 6; (2); 2; 1
  • 4-colour: 16; 12; 2; 3; 1
  • Total pieces: 72 (80)
  • Total stickers: 216

Number of positions:
(24! × 32!)/2 × 224/2 × 632/2 × 16!/2 × 1216/3 =
= 1 756 772 880 709 135 843 168 526 079 081 025 059 614 484 630 149 557 651 477 156 021 733 236 798 970 168 550 600 274 887 650 082 354 207 129 600 000 000 000 000 ≈
≈ 1.76 × 10120
≈ 1 noventrigintillion 757 octotrigintillion (short scale) / 1 vigintillion 757 novendecilliard (long scale)

Symmetry

Here are numbers of positions symmetric under some conjugacy class, using Greg Egan’s notation:

  • e: 1 756 772 880 709 135 843 168 526 079 081 025 059 614 484 630 149 557 651 477 156 021 733 236 798 970 168 550 600 274 887 650 082 354 207 129 600 000 000 000 000
  • (1,−)4: 11 497 557 803 313 571 701 881 319 062 903 855 825 682 866 660 890 902 528 000 000
  • (1,−)2: 6 271 395 165 443 766 382 844 355 852 493 012 268 554 290 905 940 492 288 000 000
  • (2,+): 426 893 024 140 465 883 454 209 890 713 600
  • (1,−)2(2,+): 71 148 837 356 744 313 909 034 981 785 600
  • (2,+)2: 106 723 256 035 116 470 863 552 472 678 400
  • (2,−)2: 149 318 932 510 565 866 258 198 948 868 881 244 489 387 878 712 868 864 000 000
  • (1,−)(2,−): 63 875 321 129 519 842 788 229 550 349 465 865 698 238 148 116 060 569 600 000
  • (3,+): 1 237 680 706 117 919 967 859 807 513 199 071 199 232 000
  • (1,−)(3,−): 43 129 799 915 034 095 124 480
  • (4,+): 230 844 665 274 826 752
  • (1,−): 1 856 873 273 785 608 466 117 989 769 149 838 721 779 822 477 836 435 975 045 120 000 000
  • (1,−)3: 137 970 693 639 762 860 422 575 828 754 846 269 908 194 399 930 690 830 336 000 000
  • (2,−): 11 911 481 795 714 655 997 805 044 354 212 748 848 156 298 016 980 992 000 000
  • (1,−)2(2,−): 34 492 673 409 940 715 105 643 957 188 711 567 477 048 599 982 672 707 584 000 000
  • (1,−)(2,+): 426 893 024 140 465 883 454 209 890 713 600
  • (2,−)(2,+): 213 446 512 070 232 941 727 104 945 356 800
  • (3,−): 32 347 349 936 275 571 343 360
  • (1,−)(3,+): 1 572 081 206 902 992 767 287 296
  • (4,−): 1 280 679 072 421 397 650 362 629 672 140 800

Dividing their sum by 384 (the total number of symmetries of the tesseract) gives us
4 574 929 376 846 707 924 918 036 664 273 502 759 412 720 391 014 473 055 557 863 939 959 893 650 526 399 862 305 272 865 622 237 030 657 852 043 408 965 632 ≈
≈ 4.57 × 10117
≈ 4 octotrigintillion 575 septentrigintillion (short scale) / 4 novendecilliard 575 novendecillion (long scale)
essentially different positions of this puzzle up to symmetry.

Antisymmetry

The number of purely antisymmetric (without additional symmetry operations; self-inverse, order 2) positions of this puzzle is found to be equal to
1 514 851 187 547 945 564 174 052 809 349 480 746 221 364 817 706 402 235 357 461 479 424 ≈
≈ 1.51 × 1066
≈ 1 unvigintillion 515 vigintillion (short scale) / 6 undecillion 515 decilliard (long scale).

For more details, see [[Mathematics/{4,3,3}_3]].

Length 4

  • 1-colour: Type 3: 64; 1; 1; 1; 8
  • 2-colour: Type 3: 96; 2; 1; 2; 4
  • 3-colour: Type 2: 64; 3; 2; 3; 1
  • 4-colour: 16; 12; 2; 3; 1
  • Puzzle orientation constraint: 192
  • Total pieces: 240
  • Total stickers: 512

Number of positions:
(64!/(8!8) × 96!/(4!24) × 296/2 × 64!/2 × 364/3 × 16!/2 × 1216/3)/192 =
= 130 465 639 524 605 309 368 634 620 044 528 122 859 025 488 438 611 959 323 482 221 544 701 493 566 589 669 139 598 204 956 926 940 147 059 366 252 849 247 482 898 636 104 705 417 194 760 866 897 307 590 845 202 461 293 100 468 293 214 262 958 591 194 739 437 727 430 945 469 384 490 361 714 647 847 550 801 897 750 293 894 453 665 815 572 829 257 758 907 425 128 919 808 862 616 259 604 997 210 112 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈
≈ 1.30 × 10344
≈ 130 tredecicentillion 466 duodecicentillion (short scale) / 130 septenquinquagintillion 466 sesquinquagintilliard (long scale)

Length 5

  • 1-colour: 208 (216)
    • (Type 0: 8)
    • Type 1.1: 48; 1; 1; 1; 6
    • Type 2.1: 96; 1; 1; 1; 12
    • Type 3: 64; 1; 1; 1; 8
  • 2-colour: 216
    • Type 1: 24; 2; (2); 2; 1
    • Type 2.1: 96; 2; 1; 2; 4
    • Type 3: 96; 2; 1; 2; 4
  • 3-colour: 96
    • Type 1: 32; 6; (2); 2; 1
    • Type 2: 64; 3; 2; 3; 1
  • 4-colour: 16; 12; 2; 3; 1
  • Total pieces: 536 (544)
  • Total stickers: 1 000

Number of positions:
48!/(6!8) × 96!/(12!8) × 64!/(8!8) × (24! × 32!)/2 × 224/2 × 632/2 × (96!/(4!24) × 296/2)2 × 64!/2 × 364/3 × 16!/2 × 1216/3 =
= 123 657 056 923 899 002 698 227 805 778 387 808 933 769 666 084 597 331 170 345 244 675 638 825 481 620 700 008 237 306 084 142 730 598 637 705 860 008 300 844 182 287 747 674 018 136 874 315 751 080 178 664 887 107 264 876 848 935 590 538 625 767 958 284 656 419 396 560 246 923 935 065 962 447 405 384 165 866 873 326 263 467 921 778 683 862 961 389 770 831 926 039 889 601 733 193 275 112 578 283 448 018 613 526 925 847 925 558 456 540 351 327 099 176 534 335 451 141 045 209 002 537 535 755 031 468 961 150 691 008 214 712 492 137 716 092 251 416 854 303 972 448 469 954 444 917 129 644 451 683 375 275 906 483 623 456 408 625 743 663 232 956 462 751 569 098 735 992 247 230 927 473 597 130 714 467 427 915 529 825 001 467 413 803 400 014 037 257 220 682 520 596 555 932 663 885 324 005 539 599 667 276 944 926 310 400 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈
≈ 1.24 × 10701
≈ 123 duotrigintaducentillion 657 untrigintaducentillion (short scale) / 123 sedecicentilliard 657 sedecicentillion (long scale)

Length 6

  • 1-colour: 512
    • Type 31: 64; 1; 1; 1; 8
    • Type 1.3: 192; 1; 1; 1; 24
    • Type 2.2: 192; 1; 1; 1; 24
    • Type 32: 64; 1; 1; 1; 8
  • 2-colour: 384
    • Type 31: 96; 2; 1; 2; 4
    • Type 2.2: 192; 1; 1; 1; 4
    • Type 32: 96; 2; 1; 2; 4
  • 3-colour: 128
    • Type 21: 64; 3; 2; 3; 1
    • Type 22: 64; 3; 2; 3; 1
  • 4-colour 16; 12; 2; 3; 1
  • Puzzle orientation constraint: 192
  • Total pieces: 1 040
  • Total stickers: 1 728

Number of positions:
((64!/(8!8))2 × (192!/(24!8))2 × (96!/(4!24) × 296/2)2 × 192!/(4!48) × (64!/2 × 364/3)2 × 16!/2 × 1216/3)/192 =

= 264 343 239 763 132 077 850 013 455 367 395 882 069 920 764 915 176 617 615 896 425 604 772 617 395 476 791 807 544 912 068 783 367 475 497 344 654 390 039 776 935 146 828 007 877 209 739 947 496 200 882 251 028 332 070 620 913 612 639 733 391 972 191 751 218 779 811 162 066 518 418 201 513 821 485 710 066 286 540 019 140 424 063 030 142 936 036 321 499 646 671 243 887 366 080 149 129 230 864 249 214 953 560 727 310 608 535 010 878 238 067 105 196 327 152 354 429 432 836 414 524 842 789 077 645 718 497 864 065 495 084 777 042 842 106 208 814 023 889 636 223 629 649 340 258 460 204 011 573 261 046 609 429 272 815 062 265 751 111 517 606 111 386 336 255 702 904 031 761 468 974 695 035 855 720 674 341 943 075 232 301 615 186 780 244 877 627 636 656 662 880 847 271 909 266 695 178 066 551 573 653 273 656 191 278 274 400 264 629 192 327 790 087 339 756 840 244 595 372 493 068 160 933 347 403 460 516 249 919 512 801 527 899 598 183 985 061 719 198 130 661 759 846 845 219 262 981 268 014 709 340 065 053 682 003 285 704 097 595 491 771 953 711 455 313 876 759 694 875 560 916 828 660 454 277 446 783 240 905 233 418 763 999 006 650 547 668 970 875 237 069 476 801 538 062 963 879 896 717 136 381 033 961 945 031 366 394 941 725 708 248 736 390 551 997 180 317 157 379 215 039 227 670 778 812 154 285 466 911 957 373 591 754 065 087 207 314 000 103 891 688 829 357 492 770 928 907 438 925 806 912 248 892 452 824 237 313 989 962 030 484 325 621 500 268 813 883 016 808 053 489 555 577 241 600 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈

≈ 2.64 × 101 283
≈ 264 sesvigintiquadringentillion 343 quinquavigintiquadringentillion (short scale) / 264 tredeciducentilliard 343 tredeciducentillion (long scale)

Length 7

  • 1-colour: 992 (1 000)
    • (Type 0: 8)
    • Type 1.11: 48; 1; 1; 1; 6
    • Type 2.11: 96; 1; 1; 1; 12
    • Type 31: 64; 1; 1; 1; 8
    • Type 1.12: 48; 1; 1; 1; 6
    • Type 1.2.1: 192; 1; 1; 1; 24
    • Type 1.3: 192; 1; 1; 1; 24
    • Type 2.12: 96; 1; 1; 1; 12
    • Type 2.2: 192; 1; 1; 1; 24
    • Type 32: 64; 1; 1; 1; 8
  • 2-colour: 600
    • Type 1: 24; 2; (2); 2; 1
    • Type 2.11: 96; 2; 1; 2; 4
    • Type 31: 96; 2; 1; 2; 4
    • Type 2.12: 96; 2; 1; 2; 4
    • Type 2.2: 192; 1; 1; 1; 4
    • Type 32: 96; 2; 1; 2; 4
  • 3-colour: 160
    • Type 1: 32; 6; (2); 2; 1
    • Type 21: 64; 3; 2; 3; 1
    • Type 22: 64; 3; 2; 3; 1
  • 4-colour: 16; 12; 2; 3; 1
  • Total pieces: 1 768 (1 776)
  • Total stickers: 2 744

Number of positions:
(48!/(6!8))2 × (96!/(12!8))2 × (64!/(8!8))2 × (192!/(24!8))3 × (24! × 32!)/2 × 224/2 × 632/2 × (96!/(4!24) × 296/2)4 × 192!/(4!48) × (64!/2 × 364/3)2 × 16!/2 × 1216/3 =

= 7 337 434 319 892 034 996 539 696 541 015 901 415 176 457 460 392 528 463 625 581 457 640 190 365 116 823 390 530 468 023 715 626 526 604 429 606 969 805 616 601 628 970 051 880 888 221 134 913 733 165 242 077 154 984 281 530 898 689 210 269 679 941 460 759 042 817 683 844 933 089 851 453 698 786 864 794 509 863 349 741 970 302 551 602 027 225 039 347 843 681 705 446 657 258 545 461 739 566 813 908 631 336 581 590 420 532 625 083 295 176 663 101 780 841 177 664 939 331 096 229 452 451 761 341 509 712 179 348 271 654 146 635 232 206 207 257 145 217 543 018 207 256 806 903 111 979 941 166 140 911 102 180 432 245 784 317 454 583 918 904 739 384 594 483 197 623 183 376 642 997 335 334 478 805 426 209 502 639 545 897 480 783 647 870 916 254 696 882 917 264 073 532 728 057 276 929 238 687 121 003 677 882 434 826 433 768 137 084 883 560 942 881 754 713 988 411 137 695 657 827 755 581 220 475 341 892 350 700 315 863 584 019 320 116 799 474 271 941 770 640 430 497 091 924 893 647 932 769 111 387 023 164 496 140 365 705 162 073 522 805 447 981 437 237 060 797 325 911 512 333 632 245 324 294 571 094 828 861 153 948 146 642 421 067 494 918 560 280 584 263 583 974 933 262 660 188 923 205 830 916 147 294 131 550 057 497 975 713 597 841 005 820 756 860 142 542 552 272 136 473 538 143 935 027 919 465 169 944 302 762 294 980 523 719 862 246 174 774 873 985 636 528 613 875 824 567 333 274 247 166 660 065 136 263 780 641 061 489 712 950 208 711 944 880 176 558 443 555 260 816 530 945 232 318 977 598 718 253 880 188 102 252 310 950 057 168 527 143 193 434 346 902 155 597 905 349 847 003 282 215 417 962 790 632 702 486 685 454 347 658 908 629 068 736 261 539 454 839 276 588 212 572 015 509 557 565 832 068 644 402 147 424 507 190 806 802 318 401 494 966 290 208 967 366 739 850 738 305 982 026 207 363 516 060 988 262 550 558 510 071 563 675 994 172 714 090 959 554 252 546 549 736 444 404 418 528 297 665 812 213 337 994 772 824 176 931 199 518 923 651 112 811 989 192 488 892 331 387 807 234 610 522 563 432 772 967 036 846 700 100 926 382 558 858 400 930 752 481 663 448 427 943 140 312 222 916 020 055 739 864 957 842 450 041 652 916 128 937 513 204 716 260 395 278 790 457 482 646 797 357 391 185 125 968 701 385 369 075 149 622 931 701 434 104 886 292 221 266 238 962 342 058 411 451 381 092 046 248 013 448 852 753 164 740 383 183 670 573 734 756 917 231 004 019 687 082 631 664 153 921 434 344 437 975 032 713 445 376 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈

≈ 7.34 × 102 070
≈ 7 novemoctogintasescentillion 337 octooctogintasescentillion (short scale) / 7 quinquaquadragintatrecentillion 337 quattuorquadragintatrecentilliard (long scale)

Length 8

  • 1-colour: 1 728
    • Type 31: 64; 1; 1; 1; 8
    • Type 1.31: 192; 1; 1; 1; 24
    • Type 2.21: 192; 1; 1; 1; 24
    • Type 32: 64; 1; 1; 1; 8
    • Type 1.32: 192; 1; 1; 1; 24
    • Type 1.2.21: 192; 1; 1; 1; 24
    • Type 1.2.22: 192; 1; 1; 1; 24
    • Type 1.33: 192; 1; 1; 1; 24
    • Type 2.22: 192; 1; 1; 1; 24
    • Type 2.23: 192; 1; 1; 1; 24
    • Type 33: 64; 1; 1; 1; 8
  • 2-colour: 864
    • Type 31: 96; 2; 1; 2; 4
    • Type 2.21: 192; 1; 1; 1; 4
    • Type 32: 96; 2; 1; 2; 4
    • Type 2.22: 192; 1; 1; 1; 4
    • Type 2.23: 192; 1; 1; 1; 4
    • Type 33: 96; 2; 1; 2; 4
  • 3-colour: 192
    • Type 21: 64; 3; 2; 3; 1
    • Type 22: 64; 3; 2; 3; 1
    • Type 23: 64; 3; 2; 3; 1
  • 4-colour: 16; 12; 2; 3; 1
  • Puzzle orientation constraint: 192
  • Total pieces: 2 800
  • Total stickers: 4 096

Number of positions:
((64!/(8!8))3 × (192!/(24!8))8 × (96!/(4!24) × 296/2)3 × (192!/(4!48))3 × (64!/2 × 364/3)3 × 16!/2 × 1216/3)/192 =

= 7 298 630 393 778 844 864 568 143 383 459 726 053 461 517 774 383 941 838 302 771 885 483 162 536 899 931 862 470 902 072 314 562 194 252 134 037 642 407 021 100 459 078 625 113 642 986 993 514 762 533 946 969 692 633 126 836 728 330 705 573 617 685 406 236 054 600 275 288 785 731 346 196 004 099 611 924 222 355 536 072 087 294 231 412 633 967 881 261 904 471 628 555 164 213 443 042 841 893 402 629 838 414 619 258 775 019 893 293 373 143 281 125 659 746 117 418 207 442 055 899 722 176 992 655 714 064 016 290 068 289 014 378 331 224 424 969 527 782 053 540 566 763 939 404 124 943 456 850 749 478 341 695 351 714 092 805 375 184 574 745 680 685 298 734 793 184 719 699 943 735 122 167 052 230 235 674 369 665 179 220 355 936 535 653 731 110 528 074 074 546 162 936 063 748 033 807 452 347 455 124 795 446 961 600 754 593 022 098 492 662 955 642 469 391 481 238 837 959 210 761 899 978 770 290 296 801 644 454 560 082 410 921 166 893 038 056 195 523 413 960 198 410 344 686 586 684 624 065 887 820 038 699 834 456 569 922 500 242 570 373 142 895 165 062 471 677 780 871 062 088 409 660 616 835 527 866 285 407 824 033 087 947 308 494 344 494 700 284 965 440 667 872 171 495 421 767 623 956 018 746 532 879 493 431 521 168 551 239 660 996 022 625 850 089 268 029 803 564 936 471 111 234 347 862 328 001 619 195 393 031 516 400 043 725 588 952 621 261 295 819 460 335 091 281 605 006 700 578 686 487 951 015 392 162 852 331 029 848 895 977 142 694 978 929 940 872 031 626 839 716 602 262 012 567 111 725 111 893 651 893 044 020 524 951 637 388 362 524 572 241 332 171 388 700 226 043 987 276 530 717 339 783 327 708 686 818 786 197 821 222 053 878 024 731 535 101 330 204 417 754 977 769 361 043 300 405 183 131 827 025 692 842 925 443 608 717 786 733 452 999 531 561 995 138 592 101 652 469 134 223 061 234 148 651 810 016 863 363 047 918 141 097 024 064 717 367 576 379 019 936 433 717 731 204 436 268 994 408 138 969 015 071 207 699 558 432 441 584 050 968 221 336 280 911 179 299 615 222 218 033 782 479 836 195 550 921 857 733 482 611 338 451 476 001 099 164 392 930 521 170 191 989 430 101 534 685 011 182 710 822 493 143 493 698 900 440 643 589 938 962 565 413 915 018 161 968 300 779 556 733 438 500 105 806 046 132 576 621 919 949 521 929 097 228 678 770 907 361 994 371 281 976 040 612 598 383 750 542 609 643 578 838 937 959 173 433 717 022 492 344 799 879 354 622 647 759 592 030 329 586 565 544 061 633 738 219 776 252 761 434 837 021 418 627 786 709 506 119 169 117 871 727 031 692 575 386 868 033 844 637 732 479 609 575 982 743 552 913 093 742 030 893 796 527 925 339 227 540 558 921 106 770 658 160 718 595 432 957 658 775 830 303 347 441 047 130 290 642 365 176 467 960 714 728 587 927 477 533 121 314 943 977 022 190 582 658 866 210 482 086 082 281 418 341 788 274 139 083 442 568 066 763 601 235 985 308 905 738 445 270 123 336 281 216 866 035 733 843 667 267 957 185 724 294 324 479 441 528 572 162 634 575 683 887 228 062 398 779 459 839 033 308 255 091 932 978 551 034 724 674 648 072 187 190 228 415 860 837 277 675 867 940 520 208 774 839 397 163 523 846 866 756 081 410 351 981 004 798 225 931 987 133 110 550 696 181 663 946 357 418 920 950 627 747 721 643 158 298 281 661 395 395 426 614 178 024 899 125 536 741 503 553 329 818 288 113 241 825 430 644 120 743 756 884 555 825 081 422 463 838 988 708 755 681 381 717 178 836 967 905 281 673 896 256 468 006 304 848 551 523 093 474 582 537 387 623 558 344 338 437 942 654 620 498 618 937 632 382 876 776 792 539 467 650 612 024 943 370 901 794 850 517 434 839 993 846 417 657 833 934 734 412 220 745 855 109 756 544 001 222 740 535 565 068 504 807 347 869 744 103 238 464 432 948 726 233 283 470 170 954 524 553 504 398 118 498 325 203 800 254 872 289 280 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈

≈ 7.30 × 103 177
≈ 7 millioctoquinquagintillion 299 milliseptenquinquagintillion (short scale) / 7 novemvigintiquingentilliard 299 novemvigintiquingentillion (long scale)

Length 9

  • 1-colour: 2 736 (2 744)
    • (Type 0: 8)
    • Type 1.11: 48; 1; 1; 1; 6
    • Type 2.11: 96; 1; 1; 1; 12
    • Type 31: 64; 1; 1; 1; 8
    • Type 1.12: 48; 1; 1; 1; 6
    • Type 1.2.11: 192; 1; 1; 1; 24
    • Type 1.31: 192; 1; 1; 1; 24
    • Type 2.12: 96; 1; 1; 1; 12
    • Type 2.21: 192; 1; 1; 1; 24
    • Type 32: 64; 1; 1; 1; 6
    • Type 1.13: 48; 1; 1; 1; 6
    • Type 1.2.12: 192; 1; 1; 1; 24
    • Type 1.32: 192; 1; 1; 1; 24
    • Type 1.2.13: 192; 1; 1; 1; 24
    • Type 1.2.21: 192; 1; 1; 1; 24
    • Type 1.2.22: 192; 1; 1; 1; 24
    • Type 1.33: 192; 1; 1; 1; 24
    • Type 2.13: 96; 1; 1; 1; 12
    • Type 2.22: 192; 1; 1; 1; 24
    • Type 2.23: 192; 1; 1; 1; 24
    • Type 33: 64; 1; 1; 1; 8
  • 2-colour: 1 176
    • Type 1: 24; 2; (2); 2; 1
    • Type 2.11: 96; 2; 1; 2; 4
    • Type 31: 96; 2; 1; 2; 4
    • Type 2.12: 96; 2; 1; 2; 4
    • Type 2.21: 192; 2; 1; 2; 4
    • Type 32: 96; 2; 1; 2; 4
    • Type 2.13: 96; 2; 1; 2; 4
    • Type 2.22: 192; 2; 1; 2; 4
    • Type 2.23: 192; 2; 1; 2; 4
    • Type 33: 96; 2; 1; 2; 4
  • 3-colour: 224
    • Type 1: 32; 6; (2); 2
    • Type 21: 64; 3; 2; 3; 1
    • Type 22: 64; 3; 2; 3; 1
    • Type 23: 64; 3; 2; 3; 1
  • 4-colour: 16; 12; 2; 3; 1
  • Total pieces: 4 152 (4 160)
  • Total stickers: 5 832

Number of positions:
(48!/(6!8))3 × (96!/(12!8))3 × (64!/(8!8))3 × (192!/(24!8))11 × (24! × 32!)/2 × 224/2 × 632/2 × (96!/(4!24) × 296/2)6 × (192!/(4!48))3 × (64!/2 × 364/3)3 × 16!/2 × 1216/3 =

= 287 720 610 342 142 638 099 343 160 892 803 846 287 353 342 063 763 109 985 307 281 171 530 927 114 024 104 078 642 361 774 862 521 032 248 362 521 424 764 192 019 062 345 635 969 295 125 170 661 286 072 914 609 064 946 120 060 335 707 139 872 262 695 919 038 177 318 231 518 172 018 499 210 909 318 840 744 667 866 291 511 085 965 689 346 067 403 281 854 871 197 798 890 812 943 326 824 640 736 563 948 775 652 140 367 740 010 015 631 377 344 284 477 115 731 013 982 635 791 500 678 029 613 764 894 109 395 818 031 762 415 226 111 145 719 626 805 077 478 462 378 948 887 474 806 842 869 895 696 708 147 773 711 160 365 991 235 656 867 231 484 004 778 442 203 331 643 310 284 547 713 784 486 181 648 936 821 787 075 783 550 228 123 130 415 837 138 014 753 779 572 742 973 871 168 343 371 201 820 870 458 410 952 760 980 242 141 059 500 287 492 908 517 502 563 849 227 132 472 062 089 916 965 101 738 606 947 333 510 123 550 398 790 895 898 149 476 665 324 083 012 153 265 747 830 168 253 713 085 847 854 544 363 729 805 568 120 346 814 411 966 022 937 838 870 031 323 200 401 084 480 566 529 799 186 350 279 750 837 745 789 704 619 578 466 605 238 106 035 925 959 831 674 461 158 014 230 961 791 578 761 736 461 402 551 992 417 825 390 233 787 773 834 917 572 130 737 124 855 591 498 702 062 004 675 530 380 594 713 878 473 005 236 013 848 821 718 240 973 436 373 321 289 902 537 467 680 489 242 861 433 397 776 835 164 532 404 600 480 470 288 698 241 616 437 343 022 182 600 771 639 804 430 297 206 085 513 566 783 108 926 199 773 306 406 772 417 289 807 850 233 011 994 446 976 457 695 070 082 019 621 764 798 058 491 741 448 215 195 773 170 890 915 159 243 344 703 440 938 067 059 519 585 270 141 482 670 760 668 120 722 744 586 741 916 658 509 355 997 035 115 359 000 359 531 160 726 890 683 395 901 336 867 168 248 021 283 961 267 250 732 258 031 418 818 435 265 746 034 817 822 343 392 482 495 324 689 270 877 247 494 527 456 998 427 180 187 755 226 458 065 576 140 796 416 210 203 250 353 954 134 543 481 941 240 720 984 093 796 824 983 512 236 914 220 998 624 395 640 897 377 058 090 648 988 115 325 292 967 525 453 639 841 349 773 306 272 111 316 958 039 883 469 099 284 416 233 384 086 262 589 758 696 907 365 840 247 908 192 615 922 617 172 684 825 444 364 277 200 130 935 478 504 254 198 187 785 451 187 150 447 941 895 471 988 655 114 463 720 497 568 861 265 943 923 320 467 122 820 904 247 231 579 577 882 555 054 939 459 680 454 984 461 381 818 990 363 773 477 736 262 787 769 044 398 594 211 609 874 855 705 693 986 143 071 257 363 673 753 946 265 895 144 129 893 167 212 151 748 888 617 791 127 180 828 458 134 412 349 079 758 301 211 743 863 533 594 643 286 566 331 512 498 529 062 504 758 456 535 199 341 378 180 796 853 986 358 535 823 595 140 285 120 788 867 888 340 266 938 584 770 309 044 901 038 017 531 742 052 158 502 824 115 366 725 841 305 625 242 242 199 045 498 941 101 359 329 751 489 664 494 622 456 348 668 690 065 668 600 010 324 328 533 831 286 953 544 656 401 151 133 341 799 285 700 305 425 006 989 263 580 490 671 610 420 878 753 703 879 216 129 960 722 903 621 993 374 764 652 473 703 823 767 212 161 507 092 847 766 137 561 334 921 929 064 325 625 270 076 379 019 173 182 881 144 984 655 642 337 113 210 962 357 687 488 222 335 127 764 184 642 816 033 293 747 664 628 672 496 494 046 970 787 532 368 159 065 501 894 544 413 645 421 751 637 191 777 538 752 762 221 586 324 275 665 141 877 143 888 218 183 490 801 944 665 875 151 675 769 348 043 308 822 309 111 619 548 331 111 889 041 731 603 438 292 954 860 630 338 980 960 432 499 287 876 696 655 714 941 748 511 094 761 618 448 320 578 202 377 203 491 475 753 365 952 805 639 707 681 386 905 517 324 900 182 400 577 043 163 822 295 276 864 841 057 930 782 106 081 125 810 029 961 826 245 319 063 703 107 848 085 349 230 762 031 386 914 334 770 291 688 480 431 565 516 661 253 101 878 386 069 921 961 494 432 283 945 804 363 424 376 933 945 498 180 861 196 358 926 118 552 776 496 422 410 021 714 624 000 246 179 608 392 650 847 001 463 956 881 767 937 683 918 984 983 851 429 742 120 354 512 607 170 741 894 908 495 208 761 472 937 302 396 568 205 425 685 617 105 250 336 057 772 866 186 657 085 991 446 721 096 600 383 107 286 354 226 860 511 607 238 164 457 031 014 412 954 440 437 330 825 085 925 388 440 643 697 982 773 797 023 414 174 670 752 499 943 864 191 473 251 980 905 464 920 998 194 537 111 018 452 261 496 463 528 499 896 058 816 881 917 196 777 135 334 465 663 235 931 322 479 195 243 346 392 325 086 924 031 361 545 914 566 206 145 591 085 147 725 920 489 903 498 056 298 781 952 906 031 474 081 424 266 872 286 453 604 488 124 517 047 286 312 592 527 372 121 289 723 644 354 326 312 209 823 240 416 644 640 119 537 881 015 756 410 301 479 473 426 377 219 237 459 164 467 708 558 723 034 133 087 030 495 823 395 395 310 558 474 014 261 174 752 171 002 782 061 505 871 297 825 935 268 803 353 355 317 166 194 404 309 684 560 541 268 535 053 486 419 748 559 735 566 231 958 409 705 932 095 234 053 185 517 361 202 213 491 286 492 062 396 684 585 746 807 982 046 097 525 084 485 293 512 210 894 350 573 939 380 175 849 887 040 956 737 752 021 607 589 279 168 335 716 464 017 748 059 642 403 147 514 895 377 267 295 402 868 972 262 361 343 302 807 393 397 046 327 434 346 812 942 507 402 536 292 701 824 106 397 015 154 067 059 730 706 185 686 243 202 106 273 501 225 679 419 604 992 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈

≈ 2.88 × 104 562
≈ 287 millinovendeciquingentillion 721 millioctodeciquingentillion (short scale) / 287 sexagintaseptingentillion 721 novenquinquagintaseptingentilliard (long scale)

Magic120Cell

Calculated by David Smith.

{5,3,3}

  • Shape: Regular 120-cell (hecatonicosachoron)
  • Cells (colours): 120 regular dodecahedra {5,3}
  • Faces: 720 regular pentagons {5}
  • Edges: 1 200
  • Vertices: 600

Length 3

  • (1-colour: 120)
  • 2-colour: 720; 2; 2; 2; 1
  • 3-colour: 1 200; 6; 2; 2; 1
  • 4-colour: 600; 12; 2; 3; 1
  • Total pieces: 2 520 (2 640)
  • Total stickers: 7 560

Number of positions:
720!/2 × 2720/2 × 1 200!/2 × 61 200/2 × 600!/2 × 12600/3 =

= 234 350 183 636 972 227 791 262 106 061 403 436 009 822 198 667 086 672 277 042 914 659 400 073 774 319 800 153 708 601 641 374 806 535 922 821 762 263 386 933 076 912 952 360 189 149 779 990 823 414 733 250 819 032 377 663 096 727 895 392 891 107 724 676 361 939 174 468 537 213 471 846 992 601 319 245 847 249 389 457 902 426 808 621 472 951 137 628 515 714 321 309 010 402 389 614 955 126 684 276 946 515 862 937 061 881 599 504 131 432 882 973 243 205 717 606 361 116 123 422 302 770 133 676 753 359 134 856 348 612 503 635 674 252 607 065 815 753 807 941 966 366 980 575 365 121 967 159 195 941 807 798 913 383 035 380 850 062 708 915 835 494 679 925 673 918 518 053 577 898 510 313 797 495 111 434 693 441 628 626 452 532 253 224 269 804 432 745 536 245 594 013 789 336 900 464 999 769 975 314 632 465 421 639 791 307 831 594 564 938 014 806 846 431 708 164 157 700 104 839 632 172 849 209 633 542 659 921 294 733 092 218 742 227 315 611 781 654 235 329 679 826 491 953 686 937 325 441 213 056 588 619 593 598 666 736 889 834 983 499 821 329 543 130 389 608 025 077 440 970 771 216 857 898 162 084 209 764 122 888 617 411 552 472 359 695 530 385 609 876 945 125 257 806 408 918 454 106 150 264 444 833 771 798 553 261 328 987 523 426 195 955 261 864 192 825 838 393 463 257 028 745 538 799 178 034 746 712 101 072 211 361 928 836 844 443 707 162 412 473 785 444 967 682 885 281 547 729 595 860 180 055 748 863 425 829 871 468 832 851 051 065 381 131 338 167 010 626 775 583 839 525 469 329 275 790 653 523 780 169 993 885 763 561 181 690 786 606 328 047 756 671 151 160 065 140 262 128 700 717 741 965 747 137 395 706 297 269 591 116 929 204 261 763 967 322 064 643 743 204 180 740 840 609 622 274 504 775 333 288 519 631 527 960 370 249 757 680 392 182 387 019 002 529 542 699 381 773 515 750 267 738 941 640 410 834 618 718 942 418 089 632 566 581 876 392 375 399 988 287 313 858 084 677 228 966 566 309 226 326 618 668 840 915 289 587 325 249 776 450 099 751 298 794 240 127 365 823 388 300 998 637 625 869 406 260 709 927 139 123 346 483 927 375 973 619 506 539 865 302 523 032 720 783 633 388 125 039 381 959 436 082 990 003 217 709 049 427 493 044 839 288 986 552 716 614 065 052 187 986 459 391 365 691 818 487 107 035 801 789 611 790 557 625 739 664 732 160 658 519 387 279 270 237 092 966 022 293 347 907 119 814 001 491 877 743 300 906 860 381 886 939 126 160 623 528 649 454 218 117 086 511 485 184 995 337 371 754 323 606 172 343 425 678 026 170 547 107 650 201 457 180 103 595 669 061 215 322 965 129 698 879 686 174 938 686 442 023 883 007 483 403 091 013 908 374 627 397 178 798 610 159 664 077 255 377 013 157 605 953 025 517 167 198 641 595 972 665 185 519 883 327 063 852 166 892 316 397 207 248 896 763 386 296 802 046 459 857 154 591 489 337 994 834 077 319 666 200 102 594 473 324 166 310 981 151 194 815 089 205 571 511 828 945 391 919 824 682 938 944 726 602 750 877 108 462 771 345 248 658 182 661 330 544 233 438 090 327 118 503 762 699 971 211 812 095 718 463 799 745 437 303 353 670 889 969 193 267 133 888 402 013 848 180 589 600 375 369 501 541 798 982 850 283 307 728 992 349 369 110 105 465 204 678 264 260 048 804 731 152 096 076 006 459 723 155 357 181 729 879 824 514 748 449 863 820 793 955 082 613 199 132 150 233 436 411 804 470 292 026 872 034 176 239 636 709 461 886 613 506 333 873 119 893 045 317 942 691 097 910 138 170 606 688 929 064 386 560 230 196 639 558 148 500 130 297 428 519 915 700 012 537 420 520 234 636 644 789 436 402 217 124 587 298 055 753 106 000 526 317 510 742 135 814 305 844 442 949 965 524 208 865 520 627 356 521 257 319 553 760 877 333 581 750 403 698 478 423 610 827 287 681 768 029 874 613 544 014 049 713 469 388 295 715 273 114 485 426 114 071 663 143 960 153 884 325 400 418 187 491 176 387 374 945 426 893 411 117 717 179 322 371 239 789 914 523 562 317 729 061 912 378 481 785 718 757 527 809 025 164 214 840 994 381 181 018 155 477 448 811 016 038 175 506 185 165 844 643 664 291 009 318 841 540 442 623 797 307 782 513 033 969 558 556 951 173 795 350 346 916 064 664 080 114 952 893 753 147 971 811 983 723 741 421 714 461 243 289 036 290 880 600 941 929 052 275 198 017 830 862 609 782 557 352 902 277 742 867 710 678 069 168 798 437 309 117 460 470 080 742 233 210 420 451 923 518 922 221 100 343 067 646 756 365 662 137 924 045 055 728 658 447 308 508 239 098 582 210 358 543 412 548 870 575 309 693 930 275 612 805 459 697 640 564 814 728 668 657 125 642 861 444 170 150 339 281 973 567 744 826 847 917 503 807 378 348 535 977 716 210 565 251 241 466 128 121 274 897 445 107 556 070 301 043 547 068 352 984 632 585 859 932 149 649 122 840 964 873 582 336 551 164 508 341 822 477 944 405 427 354 854 117 650 422 126 948 507 494 631 091 500 248 871 806 278 368 621 631 798 236 853 973 136 155 878 954 455 605 260 743 873 955 312 576 387 057 492 914 644 342 615 095 078 886 715 116 370 337 909 325 455 873 511 562 412 431 135 398 120 478 033 256 899 123 205 987 734 385 266 299 156 861 577 589 666 263 718 174 846 840 994 733 708 058 040 572 024 450 182 896 514 659 885 925 637 625 707 421 001 762 988 412 973 222 775 700 881 854 246 867 209 282 812 969 024 120 912 611 719 453 101 515 559 612 768 702 911 263 725 124 362 700 695 283 007 427 158 938 273 753 421 007 871 320 460 511 374 328 014 288 926 721 919 717 035 489 582 163 680 862 223 974 028 925 034 235 784 987 192 176 322 008 136 686 679 929 878 224 156 104 032 641 507 539 276 418 887 423 987 558 437 644 584 424 625 778 012 130 071 092 874 015 517 584 127 868 450 228 205 391 862 420 918 010 014 972 651 430 621 067 311 360 911 709 124 613 565 223 035 254 373 475 279 222 721 857 792 173 328 260 547 996 939 875 237 576 837 159 815 118 684 379 956 285 282 340 829 129 114 813 124 511 441 480 674 223 236 440 806 564 494 904 761 786 997 497 220 866 072 080 531 251 512 359 233 089 746 999 153 404 027 542 561 581 016 655 986 290 453 613 626 399 014 292 854 794 414 276 344 511 148 330 328 685 197 189 376 868 495 672 292 922 197 308 630 407 065 165 346 612 255 225 949 161 931 359 823 607 526 307 020 240 836 436 949 830 937 069 849 809 308 482 400 043 027 861 424 437 961 373 704 458 350 556 213 509 799 267 805 260 822 568 001 712 636 170 958 894 341 958 120 566 294 218 192 269 192 589 063 843 887 982 763 996 918 636 921 155 601 261 407 156 101 091 140 031 498 494 494 124 455 479 183 960 537 854 210 220 332 286 311 777 160 818 120 201 556 745 279 866 499 568 318 367 666 713 126 108 104 030 610 697 346 947 842 941 118 989 099 929 505 001 072 885 907 143 020 380 705 671 971 970 771 746 411 976 494 006 132 897 624 407 479 995 947 118 186 774 783 800 933 226 933 904 434 976 150 679 085 810 250 987 241 214 902 290 157 997 887 959 501 532 373 654 044 650 464 540 724 827 124 442 974 862 512 599 608 887 589 752 218 559 193 144 931 596 281 284 315 382 618 742 792 620 666 168 815 937 879 429 611 156 691 059 275 386 225 869 085 102 052 230 791 603 298 909 766 132 431 843 745 422 700 743 736 105 365 752 210 463 536 553 090 494 110 909 442 611 137 994 691 371 854 373 062 622 155 659 107 585 797 616 686 931 874 970 164 036 381 491 924 856 162 327 083 872 159 832 784 892 871 225 173 838 934 455 509 878 869 052 143 626 779 256 827 430 593 180 929 071 598 237 892 323 881 917 437 767 124 611 594 812 833 324 722 831 912 849 909 628 709 036 406 418 925 007 261 761 200 623 236 257 957 747 401 814 104 819 201 322 380 783 299 932 882 694 977 050 696 484 128 986 066 828 920 582 164 145 351 377 031 723 253 492 260 364 352 335 000 600 881 110 191 721 104 936 448 981 989 082 797 355 346 681 231 270 079 424 797 013 624 959 971 368 830 975 248 367 892 523 082 396 738 072 274 831 267 273 049 793 679 458 450 960 225 575 330 908 403 250 559 251 273 694 914 050 780 115 696 009 598 290 555 923 549 819 002 652 129 928 887 453 752 308 595 504 491 186 854 693 165 582 667 611 111 414 091 791 772 144 937 304 305 990 824 075 969 774 780 698 659 600 903 247 322 382 509 271 117 981 454 345 778 343 923 721 701 140 340 403 871 427 309 462 919 487 685 185 442 914 605 949 181 042 724 392 972 706 601 952 392 046 985 121 203 872 647 448 592 119 206 672 539 522 584 235 061 875 250 569 155 009 801 753 244 529 742 915 483 006 071 654 290 990 776 376 332 377 597 123 229 369 363 319 211 034 520 828 156 163 836 265 997 516 927 340 541 251 426 934 242 084 412 591 407 399 673 219 421 034 603 904 857 351 254 920 453 819 936 144 160 298 158 892 279 656 437 272 980 263 715 096 746 399 622 026 992 509 662 606 254 579 651 749 991 204 772 662 937 610 983 604 733 514 590 588 466 763 484 779 753 365 217 869 789 011 109 367 047 291 274 553 969 425 542 647 205 414 931 723 513 675 862 785 211 800 955 378 173 675 246 094 101 265 389 571 455 680 897 196 882 022 023 370 818 552 428 926 324 734 529 251 413 367 934 964 381 909 880 343 066 993 726 638 347 012 446 562 279 909 471 006 658 710 992 879 365 753 689 135 552 972 521 026 921 857 196 917 515 279 611 839 224 552 317 237 178 708 422 716 859 793 076 637 548 113 473 097 626 484 088 093 756 237 600 210 035 626 235 107 696 623 982 892 463 214 959 186 113 390 887 996 406 714 662 349 935 032 809 366 747 705 659 287 390 572 211 075 284 469 667 754 831 557 721 429 953 302 943 200 845 519 172 754 076 028 783 021 881 385 289 734 946 206 816 182 672 349 638 262 546 516 746 190 184 004 943 185 052 489 018 407 136 301 332 421 978 685 188 429 040 584 176 333 209 422 917 640 992 438 642 326 814 484 719 887 971 140 617 271 406 785 982 756 642 098 882 530 214 055 198 156 321 687 465 084 510 626 866 098 541 410 124 686 029 015 270 199 271 073 463 246 913 906 027 315 236 159 811 812 426 751 417 487 110 100 479 881 455 904 096 718 779 749 277 515 897 027 333 976 945 734 065 218 134 270 434 752 361 004 732 388 011 501 437 200 686 719 863 079 687 918 517 352 602 378 309 935 928 395 165 534 054 555 711 853 421 756 020 795 519 940 442 409 633 728 383 995 394 357 388 277 230 454 238 664 055 061 747 285 720 327 136 114 251 359 554 586 129 278 357 158 728 391 085 518 469 776 826 036 552 227 291 371 458 293 565 838 638 186 496 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈

≈ 2.34 × 108 126
≈ 234 duomilliseptenseptingentillion 350 duomilliseseptingentillion (short scale) / 234 milliquattuorquinquagintatrecentillion 350 millitresquinquagintatrecentilliard (long scale)

MagicCube5D

Calculated by David Smith.

{4,3,3,3}

  • Shape: Penteract
  • 4-faces (colours): 10 tesseracts {4,3,3}
  • Cells: 40 cubes {4,3}
  • Faces: 80 squares {4}
  • Edges: 80
  • Vertices: 32

Length 2

  • 5-colour: 32; 60; 2; 1; 1
  • Puzzle orientation constraint: 1 920
  • Total pieces: 32
  • Total stickers: 160

Number of positions:
(32!/2 × 6032)/1 920 =
= 54 535 655 175 308 197 058 635 263 389 110 963 213 764 726 777 446 400 000 000 000 000 000 000 000 000 000 000 000 000 ≈
≈ 5.45 × 1088
≈ 54 octovigintillion 536 septemvigintillion (short scale) / 54 quattuordecilliard 536 quattuordecillion

Length 3

  • (1-colour: Type 1: 10)
  • 2-colour: Type 1: 40; 2; (2); 2; 1
  • 3-colour: Type 1: 80; 6; (2); 2; 1
  • 4-colour: Type 1: 80; 24; 2; 2; 1
  • 5-colour: 32; 60; 2; 1; 1
  • Total pieces: 232 (242)
  • Total stickers: 800

Number of positions:
(40! × 80!)/2 × 240/2 × 680/2 × 80!/2 × 2480/2 × 32!/2 × 6032 =
= 701 667 712 402 950 678 588 563 925 537 442 843 125 814 486 474 172 376 339 080 083 735 282 432 570 880 422 175 614 251 163 058 229 250 653 847 841 202 640 036 019 428 140 364 685 715 598 365 298 331 873 395 846 086 528 536 260 972 280 760 386 269 552 019 118 684 785 923 871 866 118 371 825 759 785 012 234 146 827 079 564 220 427 338 910 666 898 674 313 780 003 300 502 236 858 905 700 554 243 767 722 706 512 968 255 467 907 689 651 857 607 094 055 701 717 148 055 663 687 118 563 692 897 948 419 085 505 315 326 824 962 012 039 175 406 034 820 217 915 303 954 177 226 545 938 524 363 992 267 629 090 384 186 791 766 814 569 267 200 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈
≈ 7.02 × 10560
≈ 701 quinquaoctogintacentillion 668 quattuoroctogintacentillion (short scale) / 701 trenonagintillion 668 duononagintilliard (long scale)

Length 4

  • 1-colour: Type 5: 160; 1; 1; 1; 16
  • 2-colour: Type 4: 320; 2; 1; 2; 8
  • 3-colour: Type 3: 320; 6; 1; 2; 4
  • 4-colour: Type 2: 160; 12; 2; 3; 1
  • 5-colour: 32; 60; 2; 1; 1
  • Puzzle orientation constraint: 1 920
  • Total pieces: 992
  • Total stickers: 2 560

Number of positions:
(160!/(16!10) × 320!/(8!40) × 2320/2 × 320!/(4!80) × 6320/2 × 160!/2 × 12160/3 × 32!/2 × 6032)/1 920 =

= 329 258 817 090 464 311 419 012 233 046 978 426 360 158 605 795 977 131 940 223 230 435 097 869 919 859 586 699 140 369 170 815 039 190 102 139 049 185 312 695 181 218 968 746 923 853 410 843 685 525 261 643 119 750 409 364 803 904 377 420 404 711 265 372 946 648 200 199 642 462 697 534 931 009 574 396 412 235 997 741 126 965 917 568 483 121 979 830 246 663 436 534 365 203 153 651 017 870 287 935 678 667 319 720 373 334 817 163 947 574 944 903 018 924 762 125 397 059 043 303 724 684 994 061 492 600 399 152 245 408 467 451 054 222 242 623 933 920 712 849 736 956 525 360 427 315 837 912 334 435 027 044 822 163 933 734 072 209 292 915 555 775 468 708 127 133 353 449 355 022 472 887 388 942 874 891 462 626 199 801 944 047 834 417 856 614 426 628 542 638 474 541 136 391 849 035 063 235 221 285 223 467 321 748 368 506 014 457 845 896 547 461 455 850 760 787 280 484 567 491 508 403 703 415 886 835 653 219 713 941 459 369 901 867 028 171 572 852 213 370 834 360 897 058 493 037 563 580 594 557 174 708 581 542 792 082 257 298 444 906 818 514 086 713 485 707 083 464 971 906 543 442 722 359 115 905 244 647 515 430 463 061 136 552 484 130 503 280 040 096 452 627 348 006 698 959 149 964 681 951 621 637 274 204 744 919 841 785 915 589 132 723 509 507 926 586 079 720 706 128 410 637 488 279 370 221 188 495 470 258 029 468 127 436 426 526 362 520 619 549 555 604 101 007 513 811 594 696 214 011 684 114 749 010 156 924 735 658 453 522 125 972 528 061 153 537 466 316 535 306 095 178 484 714 940 903 036 286 768 547 981 096 802 166 745 652 404 844 042 933 459 417 476 639 613 979 811 251 983 932 936 459 830 427 643 557 292 263 979 875 049 074 355 021 769 999 385 484 556 708 201 030 479 649 241 606 472 656 901 848 969 488 395 723 900 618 963 451 793 918 910 196 638 024 341 119 334 041 999 716 958 329 437 618 859 694 196 278 022 967 518 616 323 150 193 717 241 617 439 227 464 441 273 126 623 600 061 301 408 854 484 592 567 520 393 106 376 946 128 497 710 024 563 911 818 551 909 198 932 311 975 727 737 368 699 337 712 022 727 069 323 470 751 622 830 345 042 373 084 798 131 181 275 673 443 484 935 113 105 727 775 844 362 068 570 162 046 349 449 717 687 506 740 733 935 559 816 398 802 377 138 304 163 893 790 041 113 859 507 798 016 124 423 134 839 501 583 639 476 256 162 266 507 172 848 550 206 867 719 601 607 477 720 397 898 913 538 531 371 859 021 518 276 873 497 082 971 942 412 335 821 858 166 889 228 708 566 721 367 703 811 317 996 536 977 600 302 207 464 487 459 270 311 280 640 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈

≈ 3.29 × 102 075
≈ 329 nonagintasescentillion 259 novemoctogintasescentillion (short scale) / 329 quinquaquadragintatrecentilliard 259 quinquaquadragintatrecentillion (long scale)

Length 5

  • 1-colour: 800 (810)
    • (Type 1: 10)
    • Type 2.1: 80; 1; 1; 1; 8
    • Type 3.1: 240; 1; 1; 1; 24
    • Type 4.1: 320; 1; 1; 1; 32
    • Type 5: 160; 1; 1; 1; 16
  • 2-colour: 1 080
    • Type 1: 40; 2; (2); 2; 1
    • Type 2.1: 240; 2; 1; 2; 6
    • Type 3.1: 480; 2; 1; 2; 12
    • Type 4: 320; 2; 1; 2; 8
  • 3-colour: 720
    • Type 1: 80; 6; (2); 2; 1
    • Type 2.1: 320; 6; 1; 2; 4
    • Type 3: 320; 6; 1; 2; 4
  • 4-colour: 240
    • Type 1: 80; 24; 2; 2; 1
    • Type 2: 160; 12; 2; 3; 1
  • 5-colour: 32; 60; 2; 1; 1
  • Total pieces: 2 872 (2 882)
  • Total stickers: 6 520

Number of positions:
80!/(8!10) × 240!/(24!10) × 320!/(32!10) × 160!/(16!10) × (40! × 80!)/2 × 240/2 × 680/2 × 240!/(6!40) × 2240/2 × 480!/(12!40) × 2480/2 × 320!/(8!40) × 2320/2 × (320!/(4!80) × 6320/2)2 × 80!/2 × 2480/2 × 160!/2 × 12160/3 × 32!/2 × 6032 =

= 231 742 496 334 769 621 203 570 925 792 667 041 261 904 107 297 893 531 866 261 129 442 767 966 574 856 004 567 939 907 860 262 055 620 626 854 986 635 712 884 737 859 907 192 504 857 197 031 162 875 670 032 292 045 664 704 325 567 404 830 729 887 736 247 656 191 551 659 807 096 917 570 463 527 185 957 743 222 684 517 653 378 698 554 880 115 382 183 752 318 022 919 490 829 888 949 807 818 844 111 074 415 267 375 185 499 872 554 371 229 703 887 148 942 593 982 550 603 018 850 708 052 566 109 797 892 237 722 552 844 669 229 776 730 164 293 382 996 583 005 818 642 780 335 723 947 317 878 323 659 940 954 910 030 677 671 342 106 799 060 405 851 777 167 813 676 976 922 090 130 676 324 147 887 927 343 956 133 267 753 209 106 481 298 779 210 517 846 799 598 218 868 050 609 061 869 714 134 363 659 062 456 431 623 090 252 535 875 636 852 308 343 217 394 432 387 656 040 776 518 756 128 300 305 679 436 988 693 838 529 384 437 863 810 962 105 446 950 129 618 160 256 425 373 508 600 000 973 456 890 228 696 054 685 181 633 221 136 858 399 022 692 704 212 373 228 722 760 696 019 599 511 942 704 193 617 785 937 543 665 220 527 401 016 496 651 556 435 036 725 902 903 504 168 820 323 927 587 119 276 087 346 998 250 668 774 499 937 775 422 750 023 260 143 265 722 588 823 133 028 316 778 725 688 719 808 592 102 478 536 219 541 613 625 194 267 293 678 389 372 300 699 055 067 569 162 915 955 221 783 557 091 125 066 400 106 235 096 886 976 004 117 684 571 040 907 455 392 011 362 588 086 377 098 290 209 973 084 221 009 377 693 783 879 861 306 915 819 926 453 899 281 076 368 398 731 429 137 617 987 206 984 289 050 335 786 404 638 796 552 552 512 473 488 228 714 562 028 841 690 530 787 553 914 776 131 739 483 263 599 066 465 269 536 540 022 441 337 085 484 780 658 788 527 943 285 163 059 337 659 527 843 661 906 501 200 530 560 880 260 333 095 302 697 352 678 020 900 637 533 444 263 406 669 400 399 864 924 031 032 120 085 877 604 985 734 961 818 865 933 042 987 698 116 469 198 327 566 964 103 855 323 184 806 092 090 569 905 856 975 160 938 895 656 505 428 601 999 743 413 919 891 724 042 889 646 202 951 707 121 362 801 056 047 880 408 108 594 072 387 964 721 462 391 391 550 029 395 797 761 424 670 516 354 617 429 415 896 669 850 938 642 357 151 218 825 101 854 156 626 780 152 417 259 275 237 468 993 654 208 236 980 894 222 953 475 307 951 276 963 606 908 298 074 925 640 205 180 608 443 146 514 862 339 587 570 615 899 956 065 840 035 063 822 343 826 481 306 371 330 899 015 063 550 828 460 653 634 108 090 439 641 229 134 003 963 254 789 188 302 753 561 464 035 008 484 451 107 690 801 648 435 734 567 393 863 982 187 214 106 566 174 462 785 881 787 940 625 758 433 606 731 165 703 823 479 575 025 604 065 973 557 622 779 686 754 812 584 359 806 570 438 434 470 463 570 481 119 435 445 403 063 108 357 635 771 332 974 005 824 391 988 614 764 849 368 840 621 214 515 227 294 998 977 130 903 630 603 558 667 058 876 557 220 035 175 535 895 350 487 501 204 857 341 099 060 461 776 519 741 638 877 229 400 147 108 008 194 230 266 124 796 743 860 156 385 893 643 687 625 599 137 978 634 857 571 149 607 693 549 008 586 349 470 275 387 919 689 799 345 397 001 935 090 903 098 723 359 575 181 195 762 899 994 338 707 084 333 606 712 334 260 252 061 616 751 321 318 234 863 225 572 756 318 372 195 071 559 092 800 498 231 859 585 623 143 819 115 144 733 435 085 004 789 865 552 761 804 323 391 865 507 273 946 827 021 548 666 534 806 463 912 659 055 157 117 329 473 610 579 400 565 146 733 929 484 073 134 407 668 911 540 245 422 399 124 836 298 253 914 307 028 983 368 835 781 570 335 038 657 696 216 570 009 406 628 119 845 364 140 600 955 638 004 276 079 910 209 252 025 372 529 826 557 053 195 049 066 393 647 986 864 522 482 126 155 388 973 659 587 218 715 138 631 527 903 794 445 305 909 256 786 715 151 156 749 251 647 443 563 211 593 085 920 796 644 719 583 279 472 446 750 077 192 464 590 776 175 521 449 680 184 496 916 252 430 272 713 268 607 256 428 947 753 713 190 687 085 108 259 423 242 854 295 705 114 159 373 482 429 213 819 640 055 717 176 175 837 722 405 227 115 153 969 352 614 909 689 965 006 572 729 802 359 811 797 630 978 395 888 115 796 006 729 360 973 413 071 401 866 865 201 572 587 367 719 172 964 143 533 453 986 296 371 344 504 838 915 950 679 085 954 648 047 200 310 842 899 110 093 150 299 561 401 601 822 141 059 865 014 475 489 776 630 063 658 344 823 360 895 509 091 430 185 074 906 374 473 739 046 025 797 361 948 222 195 243 863 926 948 524 930 457 848 056 994 278 678 818 281 817 729 777 291 699 469 989 208 747 319 264 493 157 351 546 533 319 661 245 199 503 982 987 606 121 103 375 190 117 350 685 081 669 943 718 631 243 924 907 151 824 143 336 324 743 627 664 806 457 758 755 514 877 705 764 493 933 082 743 045 561 393 840 342 991 843 349 277 070 411 031 283 790 860 458 879 260 178 499 645 122 950 708 219 745 567 188 476 870 316 867 225 529 738 889 549 161 594 583 600 840 139 482 590 791 112 449 022 078 773 072 639 370 552 972 217 745 431 457 687 591 463 812 728 174 392 552 156 449 099 948 457 718 499 330 600 042 049 723 119 205 826 281 539 393 889 521 087 935 802 680 273 177 377 017 088 898 133 957 635 255 924 481 466 844 568 819 939 480 520 375 089 368 996 021 982 557 235 724 309 600 452 745 591 108 879 707 520 587 272 644 685 433 867 517 859 975 169 038 044 934 577 685 884 739 692 272 964 699 080 077 670 239 465 147 693 151 162 028 650 117 193 071 355 300 284 060 409 677 575 304 521 029 866 908 629 660 211 181 048 031 817 067 057 885 821 535 825 552 129 318 201 826 288 023 502 841 931 124 522 394 714 812 089 812 635 322 050 500 172 037 436 368 525 964 251 951 908 978 837 497 643 697 642 447 440 094 584 612 967 903 485 949 414 404 904 916 038 816 131 378 162 577 346 608 234 118 255 632 549 624 565 318 920 040 998 564 042 961 686 162 128 637 365 409 723 599 687 232 386 318 103 637 649 323 581 462 934 171 360 176 419 010 808 268 516 499 506 869 542 918 189 702 122 202 612 201 852 425 397 307 199 412 641 440 245 802 085 079 285 519 325 692 869 018 868 802 430 748 644 463 177 084 541 616 196 928 248 849 048 910 545 355 802 376 319 055 345 745 527 095 923 132 110 142 313 707 309 052 502 265 649 319 924 149 745 635 382 300 216 567 472 065 111 289 713 379 446 889 059 166 110 678 054 593 139 994 163 324 702 818 200 692 176 672 236 446 232 820 825 795 162 392 223 963 274 594 030 083 691 193 864 778 717 595 561 182 705 130 352 316 876 286 431 499 666 587 722 327 634 644 810 176 112 938 188 800 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈

≈ 2.32 × 105 267
≈ 231 milliquattuorquinquagintaseptingentillion 742 millitresquinquagintaseptingentillion (short scale) / 231 septenseptuagintaoctingentilliard 742 septenseptuagintaoctingentillion (long scale)

Length 6

  • 1-colour: 2 560
    • Type 51: 160; 1; 1; 1; 16
    • Type 2.4: 640; 1; 1; 1; 64
    • Type 3.3: 960; 1; 1; 1; 96
    • Type 4.2: 640; 1; 1; 1; 64
    • Type 52: 160; 1; 1; 1; 16
  • 2-colour: 2 560
    • Type 41: 320; 2; 1; 2; 8
    • Type 2.3: 960; 2; 1; 2; 24
    • Type 3.2: 960; 2; 1; 2; 24
    • Type 42: 320; 2; 1; 2; 8
  • 3-colour: 1 280
    • Type 31: 320; 6; 1; 2; 4
    • Type 2.2: 640; 3; 1; 3; 4
    • Type 32: 320; 6; 1; 2; 4
  • 4-colour: 320
    • Type 21: 160; 12; 2; 3; 1
    • Type 22: 160; 12; 2; 3; 1
  • 5-colour: 32; 60; 2; 1; 1
  • Puzzle orientation constraint: 1 920
  • Total pieces: 6 752
  • Total stickers: 12 960

Number of positions:
((160!/(16!10))2 × (640!/(64!10))2 × 960!/(96!10) × (320!/(8!40) × 2320/2)2 × (960!/(24!40) × 2960/2)2 × (320!/(4!80) × 6320/2)2 × 640!/(4!160) × 3640/3 × (160!/2 × 12160/3)2 × 32!/2 × 6032)/1 920 =

= 348 978 147 675 734 397 587 599 834 224 419 894 359 260 007 318 638 468 132 606 494 363 344 358 560 771 810 852 934 123 506 176 862 670 367 736 239 746 549 410 290 601 903 120 637 765 761 934 845 925 451 607 041 229 123 153 859 891 762 841 583 436 517 158 267 323 407 758 113 179 628 395 710 088 559 917 850 118 861 226 783 220 062 114 465 620 252 639 479 926 940 092 221 549 662 006 344 265 543 326 653 173 209 587 310 222 697 738 159 282 821 900 270 089 929 936 851 057 121 735 229 907 762 635 160 490 393 013 105 805 983 586 402 719 506 513 665 196 686 767 178 023 829 409 791 143 456 660 623 272 242 210 720 813 842 569 225 614 009 248 914 786 090 165 421 824 373 580 618 096 317 670 490 114 439 648 080 485 032 243 537 586 805 856 861 864 082 323 223 320 978 721 321 926 895 946 176 414 732 908 634 126 393 518 646 343 750 358 687 816 566 303 105 514 883 075 033 607 222 142 922 775 144 984 558 431 073 493 817 756 882 100 628 731 724 939 972 466 778 098 556 832 452 778 256 168 697 163 047 438 802 808 683 536 084 215 498 952 606 209 681 931 029 974 194 088 997 837 974 196 341 317 910 884 631 632 851 393 130 106 310 178 669 085 698 828 143 643 296 788 366 107 110 955 412 287 527 165 870 371 050 820 091 878 023 957 711 617 038 397 151 479 951 379 291 274 637 092 666 587 973 145 387 657 561 175 754 882 057 506 586 286 221 011 128 400 506 885 371 246 221 744 298 502 245 041 529 955 664 684 836 694 262 497 704 162 863 062 856 512 584 513 319 904 641 611 922 115 157 588 355 139 703 859 421 387 357 027 445 948 036 135 960 733 266 170 098 696 736 852 857 034 683 730 288 663 796 374 876 564 545 738 846 824 476 917 695 321 714 429 480 917 991 952 027 101 581 600 650 632 811 853 295 476 365 298 234 616 486 989 158 619 924 045 771 560 214 405 077 717 646 479 403 432 720 709 495 362 938 671 931 808 806 986 879 484 365 075 164 430 777 658 861 056 876 660 019 278 916 966 961 251 870 891 336 751 457 406 438 988 353 782 026 156 822 644 044 427 331 755 350 506 784 535 976 707 706 367 740 981 070 751 076 778 382 572 296 609 143 605 081 027 146 680 244 400 428 429 157 699 375 972 524 051 587 885 666 649 841 129 774 576 524 139 563 607 119 636 349 154 073 544 273 421 160 150 930 990 537 931 549 501 968 848 621 630 825 913 369 621 641 472 655 616 942 809 422 322 919 986 168 076 255 988 628 324 422 208 778 421 550 185 618 335 975 549 907 737 658 070 033 814 396 165 463 640 735 705 079 990 291 883 508 684 670 651 617 535 006 767 031 574 534 499 363 211 337 186 180 765 091 077 251 303 503 525 606 442 388 995 229 224 913 553 373 003 148 710 001 336 757 329 693 748 032 281 336 276 727 999 571 689 534 108 383 034 623 694 086 445 757 698 936 185 250 996 134 187 218 669 777 961 187 341 551 448 574 207 915 969 948 226 881 931 213 800 835 489 612 395 324 310 682 906 093 343 900 801 668 948 854 468 996 505 818 059 061 123 678 767 535 495 761 743 395 172 473 651 905 884 929 191 533 970 770 404 899 151 005 151 524 432 562 581 284 960 213 955 655 592 389 663 067 946 157 046 518 948 391 965 567 442 857 680 517 737 781 796 782 545 629 682 937 827 633 744 315 789 708 627 909 256 407 199 100 481 337 100 550 266 299 812 590 551 773 796 572 097 147 888 001 505 382 651 292 760 399 002 735 231 145 369 605 306 136 655 162 009 338 527 037 473 915 175 574 721 556 382 462 896 144 795 171 528 923 081 932 749 085 881 001 798 701 636 210 093 965 954 230 656 913 687 701 995 417 551 843 802 139 750 571 426 440 912 097 669 469 530 869 615 796 993 774 785 564 837 193 971 349 762 289 846 467 132 045 904 581 925 871 097 261 296 655 991 973 461 454 793 059 144 997 501 428 566 606 395 124 870 752 389 469 713 417 034 411 574 448 662 527 965 505 398 578 420 244 296 338 822 713 539 549 150 337 374 120 737 538 325 976 971 554 693 774 848 827 772 752 672 305 383 764 670 666 895 500 883 159 469 570 384 770 767 120 262 928 509 560 748 328 622 638 264 280 380 265 970 771 496 081 456 957 027 000 895 081 688 416 985 140 369 826 084 620 888 348 249 551 107 434 205 579 088 989 617 066 016 601 968 409 698 191 664 795 080 329 406 218 251 402 056 498 309 308 100 800 776 000 692 570 708 267 829 509 540 262 087 382 487 896 320 152 133 579 025 135 640 620 691 762 681 693 865 126 625 464 882 056 731 607 748 328 731 653 304 944 234 457 701 431 541 104 048 532 312 964 846 898 017 589 658 108 902 991 032 258 533 805 008 346 784 171 109 698 892 329 250 521 822 814 313 325 001 264 057 995 428 335 797 789 513 878 772 367 207 613 245 647 034 524 422 852 310 683 146 687 016 964 343 358 024 671 959 334 898 431 925 663 459 141 184 424 183 947 597 763 242 807 146 484 107 353 762 522 750 370 196 407 333 830 749 691 541 669 596 408 625 715 712 817 409 807 659 034 330 847 214 125 901 695 715 305 993 313 735 920 174 530 023 211 308 964 221 661 957 178 307 848 453 989 556 842 419 625 465 511 005 817 022 707 091 881 185 201 976 715 777 197 988 216 736 847 384 587 024 059 807 722 554 348 229 703 771 779 931 479 599 860 203 501 300 742 923 587 071 579 410 913 866 271 812 228 016 461 461 535 998 861 376 592 209 697 182 738 322 463 195 009 443 316 709 173 626 935 368 978 234 846 644 826 052 755 597 471 622 899 509 204 370 891 088 941 814 740 228 665 424 424 658 076 671 486 983 282 962 183 270 063 487 001 459 542 267 779 612 760 949 697 906 788 031 432 034 476 312 827 341 722 909 695 683 395 230 828 883 160 824 825 406 564 823 598 610 724 346 738 221 285 969 198 494 578 557 999 525 485 022 179 524 763 966 572 348 244 083 533 887 286 359 907 815 785 097 740 700 637 749 472 962 730 698 015 873 028 321 630 527 245 517 361 971 883 010 119 433 852 433 753 165 404 223 935 490 927 242 023 533 077 598 428 849 252 973 880 209 582 646 257 522 829 453 877 402 627 920 531 744 620 178 779 913 371 122 428 955 501 578 519 165 677 818 542 476 349 673 046 970 180 145 675 994 397 811 637 941 905 089 655 022 453 359 882 605 710 466 715 929 405 635 214 325 046 916 447 243 760 970 497 186 786 326 621 371 486 089 541 978 025 445 010 385 920 288 992 849 462 205 014 615 656 257 538 104 556 769 865 803 297 562 407 943 159 458 465 590 330 162 861 711 560 114 774 363 049 539 914 754 033 052 298 927 151 080 659 084 131 839 457 644 458 030 674 143 922 407 870 338 597 569 297 679 959 122 602 864 364 759 659 664 880 159 371 871 108 355 024 587 840 893 058 537 778 989 387 604 177 962 022 478 509 826 712 203 077 061 434 692 435 936 827 262 286 613 866 373 689 583 241 524 618 812 261 091 060 637 238 775 668 550 641 875 252 496 595 779 107 235 004 221 728 151 161 068 582 193 136 210 800 982 328 729 059 087 035 269 133 995 677 176 595 745 278 449 679 100 893 623 703 143 831 199 137 750 310 240 361 753 220 395 555 559 187 742 182 736 304 586 412 218 659 573 728 368 250 635 688 132 962 065 366 884 349 770 232 233 741 795 652 025 085 971 236 579 233 893 842 985 626 949 259 418 338 705 394 781 133 000 007 382 693 158 114 692 266 912 691 588 513 511 821 618 793 826 886 297 133 140 407 470 688 657 522 912 603 147 918 689 853 984 090 494 776 774 705 682 761 479 812 814 207 443 027 671 315 049 870 064 804 199 083 397 113 165 541 427 146 835 240 713 215 691 981 369 615 688 402 549 734 865 313 524 343 328 758 114 122 651 859 069 045 497 563 620 738 767 539 220 011 066 053 464 953 223 849 557 987 699 436 382 054 710 893 588 438 538 728 090 790 255 506 441 931 983 272 411 720 141 873 118 289 652 260 562 621 326 958 762 223 423 950 611 806 156 441 110 731 948 886 531 963 002 581 080 140 283 921 244 004 360 458 483 427 644 426 795 724 833 590 579 382 257 052 700 215 226 848 947 899 331 346 200 616 164 985 224 120 589 085 901 275 182 380 943 704 734 896 690 329 089 735 490 437 055 526 662 197 298 757 851 400 968 964 637 097 509 466 342 067 377 668 929 568 214 443 466 219 000 230 345 823 556 390 612 468 928 788 867 839 151 331 863 994 949 555 586 480 020 952 100 821 046 177 799 890 256 036 828 905 358 897 710 386 902 113 015 503 512 919 909 950 360 551 449 159 550 478 723 636 781 976 877 928 897 641 749 669 530 599 730 513 095 113 592 667 461 315 919 182 331 361 348 083 626 297 752 418 875 104 923 523 739 967 626 237 691 390 653 308 474 929 722 370 323 910 192 112 075 196 526 655 650 110 128 402 788 680 879 864 320 680 000 293 268 475 614 134 471 631 627 645 467 527 263 494 380 398 461 799 518 351 538 639 878 554 490 338 034 405 852 136 978 621 932 290 286 987 453 521 426 324 267 711 399 112 645 162 658 521 946 581 522 745 513 944 848 519 968 251 031 115 931 543 830 887 413 841 695 745 824 059 189 098 461 184 423 777 764 979 979 024 612 992 311 864 695 388 645 681 286 660 541 545 229 119 046 428 600 877 003 130 424 253 361 418 060 154 321 295 408 199 503 518 434 933 104 431 476 283 434 511 946 791 630 204 119 855 660 357 288 843 035 311 041 718 153 513 197 954 898 262 661 516 973 989 798 530 693 241 023 923 812 506 457 365 729 233 500 333 067 251 920 010 549 207 194 147 696 357 950 183 801 043 660 888 799 019 216 439 226 243 221 611 056 333 186 644 566 229 104 849 182 715 693 631 557 888 698 829 196 882 135 811 297 098 893 475 892 873 936 804 750 519 589 998 097 031 962 634 064 575 161 079 255 864 561 657 007 104 731 859 149 601 577 783 237 538 740 948 378 270 621 294 435 966 909 071 656 212 071 360 456 419 670 585 493 366 468 754 597 702 075 389 271 166 133 676 406 403 271 308 262 416 504 204 636 275 925 506 829 000 919 296 784 235 185 506 952 355 020 861 348 783 888 543 061 659 031 933 035 116 924 284 270 601 366 757 399 251 339 120 331 603 209 985 476 057 158 585 244 313 848 805 457 185 786 747 073 134 102 035 288 949 628 303 380 179 530 299 374 874 429 466 263 916 734 413 337 222 851 461 196 792 583 204 395 721 625 036 592 434 315 428 003 740 202 343 087 281 163 010 265 398 090 145 151 248 845 745 429 114 976 466 091 141 123 229 166 927 222 350 147 093 992 530 318 433 109 855 033 210 519 166 599 974 958 606 485 318 286 997 009 069 719 663 726 812 385 278 682 804 012 687 857 826 137 911 226 221 797 760 580 076 317 176 622 939 887 010 739 482 324 424 481 028 893 314 397 324 445 266 619 850 471 557 966 943 456 528 638 222 092 982 414 794 165 371 851 879 699 696 055 173 595 259 515 852 424 342 111 128 724 772 873 608 242 772 982 070 342 684 247 023 859 486 524 271 871 596 999 649 512 409 232 818 982 702 819 298 986 889 277 432 645 495 431 776 777 468 832 491 626 769 782 110 732 930 324 598 249 107 862 183 726 664 983 101 440 936 437 298 904 896 045 574 930 893 951 860 087 988 552 471 393 485 411 107 098 813 647 319 882 483 368 908 405 553 625 178 144 393 459 913 112 760 699 115 917 570 683 929 722 761 724 440 757 314 150 250 308 518 646 616 015 834 525 435 864 284 213 052 129 487 454 288 794 886 920 447 659 003 462 588 605 979 211 267 640 069 643 087 636 666 913 011 998 631 971 164 841 827 932 111 670 630 807 873 096 168 682 189 235 112 519 710 081 159 070 580 406 322 551 542 674 644 804 866 239 534 415 188 895 230 820 397 897 713 701 396 525 652 965 247 255 747 968 872 418 707 174 180 871 298 637 847 938 564 572 679 856 067 601 994 608 625 217 151 019 501 989 203 607 656 138 491 898 209 283 621 334 861 768 527 749 819 583 121 055 946 120 830 915 000 461 560 380 058 971 670 950 187 998 548 989 156 832 342 592 000 549 464 340 879 804 089 536 293 018 159 908 878 780 626 794 016 908 138 615 920 344 751 307 931 076 734 451 642 658 710 719 167 575 034 326 710 179 846 994 745 522 683 182 935 072 385 211 718 178 117 469 064 461 813 397 016 437 202 166 044 162 207 507 513 900 735 695 043 116 688 739 506 943 237 809 430 363 754 051 635 116 746 459 188 716 273 053 083 355 206 406 546 839 368 986 503 929 230 485 622 854 603 652 145 231 465 210 592 996 993 376 953 308 254 981 292 485 951 094 582 146 316 706 751 203 496 352 068 560 906 408 582 334 249 112 189 098 156 136 144 518 962 387 521 368 655 097 730 262 285 066 581 635 619 102 947 514 839 458 879 422 710 068 265 867 922 223 223 044 995 280 711 132 905 049 326 523 300 796 452 785 457 620 701 378 191 899 872 883 086 992 335 839 161 061 545 181 420 975 355 157 726 212 779 060 175 167 262 492 119 245 663 117 995 120 857 753 985 947 028 904 026 221 189 162 397 511 365 835 521 762 924 920 001 447 975 681 941 098 681 180 431 625 707 800 233 642 994 050 179 968 994 161 497 083 525 810 145 712 371 520 697 936 583 707 729 859 061 021 274 423 590 955 576 889 372 649 968 410 883 985 738 902 906 116 123 076 507 149 890 151 819 704 336 497 822 689 945 029 038 186 958 497 993 142 078 945 395 221 150 492 683 033 529 071 987 647 257 623 907 144 810 794 557 633 592 002 388 973 384 422 458 878 217 682 933 302 135 613 321 889 548 028 011 882 468 459 008 486 810 414 569 559 279 008 837 327 561 016 523 320 159 724 239 151 768 382 567 872 750 864 519 452 023 099 793 063 718 991 019 383 998 245 420 625 439 284 361 002 351 065 012 382 431 315 128 975 286 671 999 186 712 947 046 188 430 886 112 024 108 681 841 640 405 770 129 674 305 122 593 971 199 777 498 680 559 155 043 180 856 172 664 467 872 724 887 557 220 320 290 501 704 792 786 472 143 189 503 533 716 958 917 799 576 715 831 053 047 802 246 749 099 898 978 698 625 175 721 849 448 128 843 585 063 641 498 661 985 023 929 825 124 875 319 008 049 355 206 207 955 380 757 204 428 693 921 421 623 919 460 673 105 896 042 811 775 811 656 157 195 082 925 041 514 450 927 026 433 628 777 334 010 766 199 388 362 431 757 345 993 405 735 850 418 720 776 613 843 280 221 175 414 323 211 916 624 690 708 627 002 860 830 470 558 694 499 307 310 682 265 766 111 708 912 008 618 784 422 763 486 211 045 035 049 318 863 362 290 595 805 810 603 577 423 778 296 388 314 192 525 425 040 520 181 813 448 972 247 927 899 706 706 983 437 796 255 239 236 477 696 080 934 934 748 445 302 873 676 086 172 598 060 831 687 981 564 598 465 906 342 419 643 001 889 976 758 893 940 335 752 772 232 432 695 413 522 700 153 136 064 243 822 341 854 418 264 135 081 932 555 767 983 039 230 220 683 090 892 262 192 781 921 952 879 836 556 818 220 778 129 942 625 665 544 000 469 145 536 975 314 185 278 741 194 385 821 888 861 223 887 847 114 009 840 354 477 685 346 722 593 609 830 315 140 000 662 970 404 409 325 174 681 117 800 050 200 246 912 354 905 107 023 930 904 533 921 702 164 785 929 458 451 204 579 869 853 406 390 481 963 828 520 039 884 940 624 724 608 569 249 104 990 367 600 078 767 910 440 063 408 615 421 196 036 830 902 315 578 002 305 900 502 173 157 626 153 628 613 684 680 730 404 059 090 476 255 489 248 440 247 910 400 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈

≈ 3.49 × 1011 441
≈ 348 tremilliduodecioctingentillion 978 tremilliundecioctingentillion (short scale) / 348 millisenongentilliard 978 millisenongentillion (long scale)

Length 7

  • 1-colour: 6 240 (6 250)
    • (Type 1: 10)
    • Type 2.11: 80; 1; 1; 1; 8
    • Type 3.11: 240; 1; 1; 1; 24
    • Type 4.11. 320; 1; 1; 1; 32
    • Type 51: 160; 1; 1; 1; 16
    • Type 2.12: 80; 1; 1; 1; 8
    • Type 2.2.1: 480; 1; 1; 1; 48
    • Type 2.3.1: 960; 1; 1; 1; 96
    • Type 2.4: 640; 1; 1; 1; 64
    • Type 3.12: 240; 1; 1; 1; 24
    • Type 3.2.1: 960; 1; 1; 1; 96
    • Type 3.3: 960; 1; 1; 1; 96
    • Type 4.12: 320; 1; 1; 1; 32
    • Type 4.2. 640; 1; 1; 1; 64
    • Type 52: 160; 1; 1; 1; 16
  • 2-colour: 5 000
    • Type 1: 40; 2; (2); 2; 1
    • Type 2.11: 240; 2; 1; 2; 6
    • Type 3.11: 480; 2; 1; 2; 12
    • Type 41: 320; 2; 1; 2; 8
    • Type 2.12: 240; 2; 1; 2; 6
    • Type 2.2.1: 960; 2; 1; 2; 24
    • Type 2.3: 960; 2; 1; 2; 24
    • Type 3.12: 480; 2; 1; 2; 12
    • Type 3.2: 960; 2; 1; 2; 24
    • Type 42: 320; 2; 1; 2; 4
  • 3-colour: 2 000
    • Type 1: 80; 6; (2); 2; 1
    • Type 2.11: 320; 6; 1; 2; 4
    • Type 31: 320; 6; 1; 2; 4
    • Type 2.12: 320; 6; 1; 2; 4
    • Type 2.2: 640; 3; 1; 3; 4
    • Type 32: 320; 6; 1; 2; 4
  • 4-colour: 400
    • Type 1: 80; 24; 2; 2; 1
    • Type 21: 160; 12; 2; 3; 1
    • Type 22. 160; 12; 2; 3; 1
  • 5-colour: 32; 60; 2; 1; 1
  • Total pieces: 13 672 (13 682)
  • Total stickers: 24 010

Number of positions: (80!/(8!10))2 × (240!/(24!10))2 × (320!/(32!10))2 × (160!/(16!10))2 × 480!/(48!10) × (960!/(96!10))3 × (640!/(64!10))2 × (40! × 80!)/2 × 240/2 × 680/2 × (240!/(6!40) × 2240/2)2 × (480!/(12!40) × 2480/2)2 × (320!/(8!40) × 2320/2)2 × (960!/(24!40) × 2960/2)3 × (320!/(4!80) × 6320/2)4 × 640!/(4!160) × 3640/3 × 80!/2 × 2480/2 × (160!/2 × 12160/3)2 × 32!/2 × 6032 =

= 228 761 829 501 391 540 143 218 471 066 070 427 098 377 593 638 274 193 238 972 002 440 125 247 730 178 656 783 730 897 777 498 970 575 932 754 763 408 793 617 321 081 488 138 102 330 503 456 124 922 172 411 363 982 005 030 934 509 940 672 173 528 339 002 794 854 394 792 450 182 539 756 967 204 037 726 781 133 525 925 456 967 524 164 752 274 788 867 952 549 243 560 821 802 858 425 895 965 532 188 432 285 885 861 185 877 199 276 911 185 713 984 792 054 915 439 707 200 889 071 741 762 220 643 479 590 976 789 530 973 518 824 935 214 935 045 853 347 412 057 925 047 215 034 549 317 987 422 967 971 694 837 194 490 196 212 426 305 963 311 071 657 777 997 729 753 381 564 462 432 528 435 898 116 726 966 810 852 114 382 969 211 072 701 652 274 115 644 159 584 739 430 457 038 079 008 779 152 112 189 307 017 085 077 111 631 614 160 229 290 318 915 054 333 515 274 637 471 701 534 292 686 013 754 843 137 281 521 598 386 890 564 677 014 620 779 901 252 020 500 336 003 763 277 874 186 145 252 832 459 085 748 774 756 696 830 351 823 851 863 926 176 134 736 272 678 473 784 768 319 496 238 115 410 460 614 913 900 935 969 524 100 571 768 940 914 986 900 913 637 859 610 287 072 307 719 366 928 067 106 080 572 532 829 689 020 049 591 595 872 059 246 190 988 310 726 055 464 395 463 235 851 195 144 597 555 498 457 762 821 586 912 769 518 623 783 101 948 078 249 716 664 805 700 863 652 024 323 424 065 309 745 072 517 164 863 059 554 920 628 521 556 362 289 313 147 693 648 073 027 827 122 391 490 093 204 905 940 710 724 559 167 443 873 562 886 964 729 042 447 783 069 438 805 754 238 361 741 237 664 859 167 767 671 391 317 086 195 133 935 805 142 120 123 248 285 914 140 525 822 511 886 979 310 288 757 769 060 699 189 907 345 174 095 113 585 537 035 017 096 769 642 504 356 401 110 931 653 851 616 809 799 613 190 066 890 942 713 886 455 008 497 222 998 936 490 005 697 748 598 162 210 775 151 053 125 118 482 294 211 497 328 516 073 688 861 158 176 172 992 339 864 800 760 302 183 763 766 016 381 790 011 419 143 070 193 590 044 073 810 862 509 293 457 337 102 209 213 805 239 633 516 696 205 470 780 189 630 564 620 426 056 060 142 582 228 931 302 046 230 618 843 122 502 495 907 766 514 970 976 955 044 463 118 719 318 309 624 627 832 378 156 211 299 104 147 163 803 066 260 397 723 152 430 001 545 577 497 012 061 150 211 375 746 862 573 991 798 803 514 630 189 076 973 759 830 426 949 782 695 183 364 155 095 818 584 623 511 363 910 310 518 178 631 131 669 059 293 395 331 583 042 820 570 745 876 942 748 891 557 841 049 704 692 490 419 612 926 224 827 290 321 751 389 790 605 728 492 315 538 780 239 017 370 583 405 452 053 569 303 524 924 205 772 783 459 021 693 824 605 841 225 722 004 700 313 663 718 497 499 132 617 585 215 211 485 652 660 894 358 747 792 783 796 332 924 896 476 971 528 697 007 775 376 990 056 612 604 351 845 959 569 815 447 420 667 989 998 459 522 714 755 549 832 513 197 114 001 686 390 451 227 698 456 376 988 589 076 665 754 758 848 799 473 953 609 781 706 269 770 739 230 673 522 828 115 924 852 019 757 036 030 377 867 380 318 061 811 998 504 211 351 072 625 585 342 232 488 219 567 669 157 957 445 095 175 971 489 448 860 119 461 672 298 870 778 050 257 096 595 532 886 666 820 759 301 570 837 900 669 280 255 732 006 346 886 504 265 433 718 385 360 202 522 484 004 721 146 693 790 456 213 262 419 123 134 271 432 385 805 090 240 793 128 992 501 795 207 787 782 546 928 924 651 186 477 029 420 249 473 749 568 539 206 219 442 941 490 828 817 133 408 285 631 987 864 721 298 916 955 385 473 437 942 737 015 556 737 786 872 808 480 422 008 665 231 257 734 266 485 220 178 434 194 702 204 650 187 303 907 010 806 468 287 689 633 004 942 281 699 234 857 140 508 619 238 888 043 478 883 081 920 337 710 822 175 823 717 989 497 549 191 863 542 775 721 482 573 078 002 739 856 229 333 299 924 648 809 693 928 304 740 249 881 089 051 830 353 943 001 311 250 354 959 226 095 765 614 139 932 325 302 156 149 133 587 538 647 759 162 642 860 779 195 494 262 668 395 671 779 283 260 122 374 228 274 759 342 896 066 797 841 036 462 125 681 744 198 362 817 587 337 972 012 331 442 199 441 331 554 509 077 982 987 879 548 494 713 137 633 747 647 824 543 986 346 590 974 449 634 670 581 601 815 635 377 760 751 178 428 268 076 560 006 464 801 924 089 699 589 513 550 877 340 715 237 098 588 169 088 524 005 752 051 608 799 125 118 918 806 488 763 888 776 212 333 586 667 357 780 128 730 506 507 006 821 802 734 214 160 278 218 400 712 770 777 209 802 941 537 681 867 710 333 774 988 307 807 991 520 490 249 325 995 919 990 076 227 749 251 806 668 933 710 073 049 201 757 498 076 820 614 471 042 506 690 751 805 778 926 287 607 174 660 909 887 912 784 822 195 805 720 368 845 304 506 151 454 486 602 405 744 769 268 810 114 612 951 688 418 434 735 428 159 833 517 931 610 287 266 664 822 404 620 753 922 264 641 667 650 132 921 695 314 450 830 613 671 755 241 686 057 745 684 193 152 596 369 527 010 922 884 160 381 317 548 720 330 951 516 584 889 733 949 593 179 692 031 129 228 823 112 214 581 438 085 917 456 401 650 062 118 314 113 088 148 630 469 089 550 367 349 095 347 332 507 000 534 360 380 743 825 403 612 190 887 371 005 629 619 380 928 391 340 350 411 462 198 088 740 095 621 885 627 756 071 657 931 232 305 251 090 071 377 918 474 816 399 075 103 758 551 465 901 615 881 965 579 853 400 856 917 878 732 092 876 158 617 308 535 700 815 779 313 680 706 943 418 630 135 586 100 408 533 379 797 117 045 792 584 869 768 551 182 199 173 126 382 771 065 211 892 425 007 763 866 087 704 588 786 140 094 968 480 355 594 724 085 030 239 656 875 656 004 398 000 192 244 592 035 399 081 802 094 321 716 488 473 674 482 684 345 583 293 839 993 476 019 832 337 714 300 959 490 438 119 998 739 797 005 094 092 471 074 554 412 349 880 978 572 012 864 267 518 102 609 060 620 032 205 010 698 913 005 395 239 513 456 603 639 729 372 349 055 215 931 084 829 911 218 926 255 010 079 187 416 677 194 579 089 397 715 004 284 210 891 130 369 375 992 192 380 966 772 032 742 253 638 791 263 302 473 966 335 528 181 733 315 427 204 008 690 645 824 175 911 606 113 279 000 667 072 345 489 884 907 901 144 890 006 811 427 366 472 804 031 436 716 189 209 832 874 443 653 640 138 281 474 128 106 837 332 316 065 360 451 493 205 908 854 192 517 582 395 969 144 851 810 804 046 663 019 120 725 854 360 789 112 903 437 740 562 380 956 790 344 171 769 055 040 925 638 292 512 735 974 464 671 425 687 262 502 776 009 551 520 343 602 324 531 133 314 811 144 839 410 348 443 037 832 215 430 764 881 772 632 822 035 618 746 944 760 179 807 208 215 082 874 505 917 134 728 063 367 021 016 483 234 996 738 600 774 539 939 403 808 056 518 903 517 232 799 980 077 951 602 658 413 287 620 780 912 924 499 377 664 488 839 286 679 108 314 332 469 542 419 059 033 192 031 009 767 987 536 698 423 007 396 484 456 568 925 105 391 233 446 324 830 387 653 549 159 687 982 675 837 764 944 732 414 695 296 932 442 028 415 284 665 112 392 623 819 194 615 565 923 789 266 280 311 977 035 635 670 050 478 460 119 812 416 079 138 707 740 735 857 968 082 837 803 629 699 947 132 727 435 304 419 015 795 461 867 141 186 995 012 253 924 189 458 225 024 270 341 497 623 873 139 316 733 553 102 587 615 100 939 140 233 107 083 923 584 526 462 719 309 960 439 383 238 068 898 691 607 691 934 624 701 452 588 611 518 468 583 562 813 550 543 246 364 740 989 761 789 745 688 335 122 900 406 183 998 852 029 906 960 802 894 042 110 834 284 575 891 932 088 434 046 604 147 516 927 640 795 251 784 535 359 412 826 736 750 123 188 759 354 079 521 458 418 905 974 460 942 879 509 480 518 761 606 263 171 678 909 728 183 193 358 499 214 024 381 054 434 928 868 569 157 323 980 211 045 210 705 243 698 329 231 215 019 635 278 845 469 393 034 738 635 203 811 867 705 937 542 879 748 018 895 163 729 570 365 182 077 244 767 743 681 736 501 362 564 526 045 497 502 564 988 881 227 469 334 059 232 212 641 037 422 470 396 451 595 990 945 659 776 232 655 156 629 933 792 871 270 457 764 070 926 555 941 427 678 232 439 174 703 811 051 840 243 588 279 948 621 619 540 350 993 382 857 271 269 397 081 290 909 600 673 035 899 733 939 013 944 254 890 383 879 005 204 265 711 898 894 905 434 185 891 589 041 264 881 793 685 274 774 029 037 423 996 210 604 109 294 364 105 527 423 002 442 798 789 130 541 303 490 991 097 871 535 146 358 828 223 917 456 331 677 107 025 900 156 869 034 997 089 801 455 154 935 506 201 266 362 217 892 521 513 390 506 904 120 511 145 697 030 361 894 687 318 673 283 841 706 934 764 403 490 575 571 192 045 188 247 741 379 873 681 425 794 005 365 209 515 694 095 083 733 772 481 532 548 578 043 866 889 675 734 716 582 766 318 234 038 959 426 925 890 124 643 487 208 425 061 973 527 908 183 395 899 701 785 919 029 133 404 942 866 997 735 287 189 837 181 274 684 541 472 826 332 003 414 039 970 316 465 104 168 988 933 211 865 539 648 774 829 004 519 096 573 135 032 892 251 793 813 316 610 595 916 204 766 059 096 813 261 190 505 519 928 610 775 676 877 817 075 959 584 939 308 707 756 426 177 976 384 812 238 294 225 143 257 797 906 451 346 707 973 036 372 910 897 066 948 097 015 208 082 890 921 368 952 467 760 430 499 690 014 864 333 878 312 358 054 745 041 588 068 850 630 466 275 336 399 603 324 341 800 009 042 362 657 988 859 250 331 416 132 847 971 508 000 620 768 475 916 078 031 682 624 781 056 256 121 503 199 722 887 554 653 199 494 330 597 048 602 507 034 413 564 425 497 806 437 233 026 871 674 334 407 454 341 020 763 475 257 639 571 624 376 904 723 501 882 485 560 429 638 640 394 105 640 428 428 146 784 300 384 668 022 767 618 209 558 446 088 202 893 566 969 517 246 838 671 111 255 528 504 002 923 892 534 014 449 190 700 456 947 853 196 235 871 048 004 275 479 811 901 629 415 848 524 414 045 243 576 347 158 870 996 026 433 544 524 896 536 555 765 800 882 726 484 449 464 937 640 998 907 792 502 889 254 747 130 837 604 772 880 037 886 779 122 913 227 528 332 850 022 718 185 471 925 174 541 455 108 412 577 769 693 303 795 791 123 856 297 256 591 374 741 617 839 484 260 866 604 201 361 901 940 916 222 516 232 239 312 265 691 403 686 765 586 395 919 545 168 759 990 894 636 658 418 955 569 831 727 380 687 429 515 349 781 640 584 851 325 991 341 805 105 557 563 641 758 845 818 084 129 938 530 435 128 128 315 024 995 524 290 385 777 596 779 189 641 003 795 183 727 191 494 156 518 677 572 132 069 651 303 030 339 914 430 800 545 774 057 004 383 383 228 843 770 332 975 818 551 761 478 098 261 335 369 563 489 205 191 507 070 521 023 126 487 096 506 685 437 189 721 556 018 717 040 403 015 263 158 859 621 090 210 138 119 851 817 958 429 824 885 581 686 217 694 462 574 851 805 809 459 487 552 805 262 575 850 127 421 193 676 302 396 581 235 601 415 422 849 260 012 020 539 751 145 032 107 368 535 386 684 475 983 784 401 861 485 898 268 897 206 645 649 544 251 411 066 987 642 926 053 187 206 547 474 477 178 999 648 393 795 750 655 460 308 029 233 714 957 200 642 334 479 398 606 026 117 765 449 048 327 109 772 851 983 346 621 946 998 984 779 946 531 652 735 518 189 886 282 941 607 831 368 696 323 762 495 418 635 964 822 314 253 317 781 789 024 468 837 135 930 729 339 664 352 931 494 306 445 220 633 301 988 015 697 563 302 324 796 951 602 554 451 711 541 944 363 674 169 797 229 102 057 532 663 340 792 036 020 402 726 526 429 842 276 080 680 140 249 154 040 124 365 429 817 956 329 551 217 339 013 293 167 771 856 227 951 357 659 656 793 559 347 266 615 555 507 754 068 369 483 365 588 131 073 655 202 223 360 713 998 050 870 556 093 968 175 535 771 252 476 326 025 880 254 614 528 647 966 361 181 184 280 916 387 128 530 733 498 231 173 387 058 613 629 260 047 522 324 453 775 561 027 967 830 951 785 419 118 000 167 701 839 068 241 802 383 673 421 461 704 944 491 165 918 045 326 573 059 019 237 420 029 029 724 618 344 107 312 475 333 954 054 686 786 468 250 097 482 235 095 127 615 336 613 687 693 541 736 702 242 265 339 102 885 942 933 178 996 450 904 946 793 855 961 390 337 273 083 102 272 585 074 918 360 658 503 829 439 342 059 674 240 768 962 780 588 511 169 680 811 290 744 112 106 285 217 763 703 486 073 469 970 365 352 588 301 807 759 918 246 114 984 328 984 827 415 390 848 649 805 310 077 431 427 480 899 712 635 798 888 453 246 825 463 356 587 289 054 680 185 870 369 275 645 989 680 284 863 684 355 800 641 452 793 482 871 903 415 035 373 557 729 160 227 809 362 905 904 340 993 944 152 849 597 368 393 823 520 269 113 358 511 086 282 703 565 577 488 865 629 050 911 779 282 963 321 423 205 445 814 636 526 853 012 857 081 885 740 344 975 846 402 372 843 222 383 262 192 659 548 244 988 963 535 825 813 879 611 867 330 514 110 828 916 539 532 725 812 898 650 966 923 250 298 277 194 909 078 584 038 915 096 949 459 013 825 767 599 105 237 253 037 097 174 985 701 793 558 849 986 871 357 969 520 130 767 698 761 741 962 534 332 923 711 216 516 010 014 065 512 308 175 702 207 507 587 831 740 315 694 251 002 707 875 791 083 990 344 626 419 562 174 423 836 948 495 651 658 948 632 944 034 551 898 025 895 010 048 843 086 933 968 186 165 016 848 959 232 536 304 648 249 145 715 445 384 785 785 088 777 272 251 314 749 637 432 343 450 630 387 324 796 845 842 997 312 288 141 247 006 529 372 931 502 018 090 148 330 143 142 815 894 389 924 886 820 671 250 873 004 464 531 617 098 583 920 636 376 741 352 448 617 029 859 246 944 081 276 342 081 125 425 884 785 188 861 044 449 585 902 133 297 452 177 119 976 749 311 977 288 600 055 398 160 120 057 060 658 284 884 789 156 518 719 532 607 997 087 706 402 817 462 601 966 331 388 930 757 730 900 495 869 468 656 750 739 413 947 202 201 224 578 952 645 499 027 574 182 866 878 556 788 139 648 683 230 427 686 600 841 831 004 133 318 607 898 561 689 752 158 831 981 257 644 462 724 410 755 307 228 415 781 722 766 547 785 856 410 712 106 909 739 897 435 352 471 056 733 238 449 245 384 805 956 307 245 258 130 904 909 096 623 101 271 984 765 975 301 804 178 805 436 187 669 320 021 259 634 128 858 981 890 981 472 160 378 038 915 870 617 914 311 279 461 818 510 726 533 908 559 400 859 118 255 978 729 406 338 088 140 790 358 944 304 272 319 650 626 671 846 105 379 025 706 832 466 541 393 191 456 725 683 164 080 142 723 197 748 861 338 147 388 491 496 498 920 657 761 518 312 641 310 742 641 382 886 003 189 651 281 283 776 774 175 246 472 305 821 100 072 343 091 394 901 809 522 565 472 169 752 331 304 562 839 603 617 479 298 606 639 116 748 474 237 046 042 699 128 240 145 330 971 087 550 178 964 211 198 688 543 679 707 769 543 270 590 914 137 595 473 867 210 292 882 255 047 373 658 424 561 216 757 094 248 040 804 358 567 810 668 332 096 088 844 642 303 104 271 910 218 372 923 764 808 198 818 007 606 263 468 085 629 200 498 793 005 964 882 552 452 280 964 762 051 352 437 271 330 538 773 585 001 684 008 669 907 896 737 000 348 445 948 458 731 648 240 737 707 912 221 216 200 107 029 034 179 204 128 262 630 930 231 211 393 873 735 536 567 955 595 003 490 144 226 324 647 868 019 699 117 265 394 874 334 590 845 334 243 312 275 708 282 944 860 267 113 291 035 757 221 790 093 204 449 993 817 798 200 957 991 500 323 990 350 936 730 028 716 983 780 564 781 877 169 863 640 540 775 513 238 000 686 210 152 506 244 926 174 848 976 004 524 422 290 145 495 982 659 227 362 245 229 131 250 405 610 673 982 750 188 588 299 059 663 970 403 399 660 557 156 316 449 951 313 623 144 628 621 098 496 076 801 632 145 551 274 649 840 895 079 599 337 817 157 500 160 525 460 378 206 882 239 491 128 627 054 714 913 634 691 462 934 567 328 911 213 344 096 910 306 606 586 478 807 226 337 362 475 476 472 565 376 784 792 762 311 426 842 803 432 902 159 746 776 572 267 252 658 607 604 628 232 647 008 732 274 172 093 819 054 231 246 805 163 689 219 177 020 302 523 896 016 084 433 142 509 630 489 047 166 645 670 983 463 407 940 114 715 688 605 009 611 586 305 174 947 201 095 319 470 020 278 955 319 871 801 309 301 532 223 047 739 264 386 790 472 465 814 247 222 532 807 305 294 227 905 891 403 412 353 514 402 163 072 755 282 636 829 738 131 838 637 093 080 859 715 531 525 864 130 382 770 042 442 444 079 367 951 835 409 980 185 078 432 485 885 446 934 135 380 445 361 018 469 040 617 666 069 519 664 518 860 065 932 154 561 334 530 797 896 338 241 043 876 567 123 190 789 360 222 551 360 164 969 443 275 028 280 883 859 773 206 754 717 097 286 359 517 927 476 210 498 803 895 674 479 990 341 171 512 039 014 787 901 713 651 192 842 944 811 358 098 039 357 297 100 099 638 848 938 552 091 394 839 039 712 730 678 847 975 329 637 503 652 486 530 920 216 500 427 667 369 406 530 818 200 619 367 770 278 495 290 992 068 032 963 422 821 539 835 817 967 636 508 581 611 251 187 905 956 137 176 600 008 682 924 871 894 811 163 972 512 047 663 921 094 189 344 415 128 805 539 539 198 284 466 071 335 297 563 324 514 160 976 637 196 447 869 321 854 174 148 862 062 594 025 740 573 262 323 643 684 745 685 782 677 871 691 187 385 616 668 979 028 056 648 444 775 752 713 812 557 416 944 557 702 871 972 590 877 207 407 144 664 995 521 234 301 514 073 980 776 539 442 431 734 429 403 299 583 951 838 289 796 331 007 283 179 390 344 673 687 114 489 229 103 964 281 288 786 170 023 267 798 311 290 771 258 600 966 506 280 955 002 923 917 924 611 514 938 946 975 098 500 568 130 221 979 220 319 284 286 579 424 764 610 432 373 693 847 920 124 180 643 723 781 530 976 573 224 088 826 307 739 394 087 336 542 247 095 068 949 703 274 615 616 064 252 882 526 566 200 114 473 090 219 536 244 693 399 766 962 073 385 513 829 378 494 830 140 645 089 928 112 912 943 415 800 401 888 840 488 984 825 876 069 961 972 210 718 900 542 436 587 910 145 841 059 385 374 347 566 536 987 172 390 795 910 080 527 754 450 074 975 487 242 046 462 065 273 454 079 998 710 464 235 780 538 225 070 694 297 455 935 256 266 174 603 059 357 459 057 396 274 431 377 497 728 505 764 362 894 506 541 147 127 856 687 997 425 903 495 158 722 283 082 783 756 671 031 596 944 675 456 885 399 810 151 245 841 566 063 763 791 445 786 199 271 524 367 792 524 168 973 941 591 358 035 828 440 099 360 441 811 544 056 758 537 744 089 247 541 473 251 764 353 644 382 833 289 918 184 770 111 345 268 652 901 306 957 715 584 425 370 891 415 147 997 163 289 429 929 413 862 353 667 231 083 286 645 600 357 447 187 841 909 451 571 211 457 459 886 235 738 126 906 586 129 274 470 272 348 803 922 363 842 730 032 218 362 906 503 591 945 642 629 302 678 487 787 253 252 481 024 542 866 223 748 553 666 072 752 535 180 514 389 181 198 189 694 394 054 666 730 802 518 004 842 547 495 857 525 777 489 126 051 635 541 534 411 086 777 385 524 584 027 420 658 739 675 959 535 955 958 410 824 635 073 917 590 517 103 251 503 232 697 730 863 180 650 650 967 714 289 995 966 549 027 942 213 868 541 244 065 517 247 173 843 902 994 997 704 579 513 402 847 466 015 875 075 928 175 869 905 517 426 991 942 988 038 389 337 447 623 640 772 131 131 875 746 572 123 000 812 435 942 924 930 945 842 102 853 099 491 882 576 695 064 745 985 539 159 682 256 792 166 258 026 498 620 246 302 952 061 983 344 115 553 359 418 104 205 260 298 748 675 099 019 565 645 586 524 409 018 321 388 885 224 764 627 064 357 953 653 117 093 753 378 026 720 787 458 562 695 508 881 266 536 871 336 597 066 532 318 358 058 099 170 828 603 739 551 974 351 649 254 018 417 151 835 023 545 959 320 532 694 834 114 382 351 303 660 299 333 947 590 129 160 508 693 765 750 156 256 399 428 694 972 854 119 930 036 704 427 455 388 891 050 501 099 515 404 790 951 544 125 739 176 313 109 789 309 663 635 031 390 225 030 393 938 539 321 087 197 703 440 630 483 242 797 152 069 240 610 461 517 076 854 496 724 307 018 558 493 794 178 993 218 448 845 018 513 796 352 359 782 535 844 723 398 786 759 415 399 738 326 760 598 808 226 745 395 252 030 898 779 810 474 834 418 478 439 792 786 448 445 119 987 861 438 033 498 866 848 708 469 838 403 386 224 747 981 695 891 439 845 026 712 001 046 722 010 529 925 786 574 912 219 329 795 425 991 232 912 612 050 555 050 225 617 925 032 471 248 668 560 295 120 072 401 094 704 565 417 061 270 962 833 583 022 547 048 699 948 377 341 450 717 049 822 066 967 458 033 524 290 455 091 723 077 650 331 325 768 174 275 329 121 081 123 557 463 490 135 868 437 520 830 429 570 004 410 434 212 736 423 703 713 645 007 107 024 905 100 957 031 215 428 809 987 682 876 061 517 991 596 701 607 212 570 646 344 532 775 759 911 152 211 007 517 187 595 078 844 604 728 587 938 535 635 147 294 558 272 788 152 777 396 096 314 393 202 245 202 137 469 750 503 502 313 850 225 306 828 107 349 120 341 693 305 257 462 387 045 536 167 157 929 645 206 641 042 511 167 373 645 155 317 765 507 664 598 693 424 339 136 100 841 174 461 682 201 123 022 177 347 638 112 002 248 215 252 804 309 082 495 495 428 289 010 089 915 889 070 598 159 323 924 117 555 193 302 882 261 714 414 972 624 779 879 754 042 694 275 840 402 077 471 040 188 670 822 661 508 727 603 315 931 416 042 390 506 701 221 554 151 246 681 137 051 143 227 352 236 407 791 702 503 411 163 958 505 250 562 489 991 276 991 228 776 272 815 762 002 625 208 274 996 779 585 576 355 914 293 564 429 748 305 732 319 281 900 761 344 127 212 915 891 049 028 210 064 487 721 516 645 593 830 663 539 428 318 398 690 651 048 097 761 100 905 809 116 254 432 791 857 722 347 588 780 146 312 378 688 517 016 907 015 434 217 774 778 609 364 156 776 168 229 252 977 606 261 862 899 870 710 349 725 933 200 537 714 449 248 057 694 132 704 278 092 522 199 974 800 955 100 264 380 701 180 367 358 371 559 213 857 067 974 201 722 026 268 923 910 471 586 748 288 141 724 619 852 224 742 932 283 987 207 074 762 328 106 110 953 364 977 023 995 510 752 179 809 513 779 314 495 107 287 575 197 386 130 459 658 555 877 544 264 988 263 360 279 270 135 598 136 150 709 741 441 348 611 439 363 139 735 857 306 886 300 919 150 517 407 098 214 449 285 805 000 084 152 686 556 845 784 750 316 612 505 319 516 013 108 903 778 917 473 541 433 529 707 149 358 393 069 189 061 606 161 562 135 890 107 038 845 182 274 866 847 403 860 510 130 527 346 157 538 093 605 139 426 994 611 228 761 713 781 054 042 430 066 660 045 084 901 271 862 944 793 260 504 599 582 193 774 203 977 139 847 419 072 218 544 676 605 772 492 980 793 183 180 050 452 941 345 187 914 181 319 169 987 155 993 412 392 779 743 181 176 248 030 038 143 085 378 922 166 200 516 229 399 879 385 712 010 964 973 170 554 941 892 720 835 949 364 415 468 665 977 935 226 920 020 568 477 666 381 512 730 840 766 093 369 413 377 835 566 801 806 364 387 585 235 698 556 844 463 536 014 748 420 030 056 647 700 237 199 821 067 492 555 758 820 847 272 428 294 803 377 023 782 750 375 435 500 611 634 951 904 253 560 550 195 568 851 306 146 322 332 378 779 076 362 216 978 681 209 104 714 682 189 162 833 253 247 762 586 326 203 035 387 628 461 182 616 934 985 600 955 728 041 370 133 004 089 606 567 315 304 565 002 591 009 610 005 215 836 622 498 178 311 057 085 554 775 319 349 122 780 508 462 452 120 382 847 426 840 752 304 612 030 669 700 792 329 733 997 362 732 012 685 679 083 883 659 281 363 611 724 357 794 243 294 746 810 949 690 714 256 863 789 361 793 789 687 496 657 750 656 075 205 705 884 577 412 207 905 874 913 990 893 342 839 092 221 685 576 886 402 135 002 454 590 241 943 837 460 129 188 792 712 763 378 445 754 579 796 315 065 282 422 731 243 963 240 195 614 687 838 001 467 072 753 189 770 174 510 166 500 831 962 173 912 753 955 657 682 589 828 453 298 950 013 421 161 422 514 382 247 146 789 983 462 376 465 105 249 809 906 068 207 761 741 611 696 879 468 498 224 553 432 381 931 023 903 298 701 783 971 760 707 776 384 356 471 316 999 837 738 809 116 279 952 161 544 364 798 464 287 494 892 102 705 277 808 971 011 034 042 855 775 795 300 434 822 251 719 949 925 958 847 385 543 668 003 438 433 758 107 432 680 330 371 275 075 930 384 026 035 648 246 295 056 169 705 585 687 335 067 200 674 448 572 655 487 104 612 768 750 991 161 504 048 947 684 869 390 011 550 786 242 321 193 867 108 961 235 791 085 445 231 804 660 046 283 965 999 106 736 357 845 145 881 924 923 836 164 459 626 889 531 287 928 576 767 660 155 310 683 582 279 090 688 943 522 515 083 742 812 199 522 099 343 637 728 273 241 109 172 596 607 536 301 051 138 320 160 539 606 778 714 618 142 642 112 698 875 080 018 264 552 041 939 081 703 025 591 387 571 709 132 596 810 863 869 462 112 854 214 082 007 018 360 969 369 348 153 807 498 117 805 019 334 068 464 587 625 950 235 871 728 161 236 884 408 468 221 368 946 303 443 847 734 015 102 667 523 103 476 630 705 228 412 464 517 733 285 483 909 681 629 327 393 127 621 415 681 328 414 971 916 452 331 978 373 612 839 452 791 218 251 136 481 421 396 345 063 005 418 698 652 126 683 791 320 024 947 721 497 588 148 668 382 146 054 146 761 942 314 922 613 115 452 233 445 987 585 215 886 777 722 698 000 177 693 138 818 618 184 616 490 826 809 008 910 041 631 744 329 156 812 188 014 194 948 449 135 325 452 370 901 554 546 919 029 835 592 253 393 546 664 392 053 520 339 712 239 672 337 620 927 532 755 150 769 781 074 611 482 901 783 800 239 512 675 754 474 220 268 085 673 269 603 622 897 033 141 778 093 600 903 666 565 666 518 218 929 433 083 109 033 598 028 194 377 504 750 831 519 505 393 095 355 916 868 954 344 835 676 204 675 488 688 239 024 941 776 715 487 216 873 880 901 184 044 111 055 811 742 845 565 597 536 068 680 649 339 212 203 735 455 383 130 149 958 497 644 002 206 765 949 826 804 202 443 719 332 097 115 752 296 330 688 643 126 489 153 178 963 787 682 314 487 003 739 545 697 115 318 838 142 220 056 753 217 158 381 109 388 277 098 098 150 942 623 433 164 806 692 275 828 373 936 469 715 192 463 663 021 886 153 655 391 004 158 939 660 461 765 841 733 435 779 856 324 158 454 445 809 155 374 417 974 535 964 288 492 307 580 105 027 036 118 776 644 960 306 324 668 510 997 140 159 424 561 574 417 194 472 071 950 610 173 489 345 463 090 033 225 889 525 129 786 864 065 650 512 268 702 392 944 318 408 070 113 692 515 346 368 303 717 862 726 657 930 426 308 300 446 470 391 607 703 704 259 875 724 339 190 696 553 957 014 733 982 719 265 574 827 213 911 490 072 342 144 758 109 505 983 498 357 377 621 329 670 408 239 224 747 376 025 315 836 121 622 526 477 400 565 922 992 618 285 156 411 075 784 705 617 039 020 933 472 243 312 224 693 474 405 197 762 440 238 836 606 494 444 480 087 222 268 235 681 469 358 877 931 146 941 531 080 946 285 676 102 564 875 128 470 615 337 273 912 695 267 141 965 464 129 421 684 452 588 905 141 845 782 166 828 483 970 442 878 546 465 677 976 727 772 797 784 197 502 175 926 750 256 547 283 952 956 459 631 614 255 039 129 888 480 315 049 850 767 570 629 821 330 761 814 641 719 839 257 911 351 915 537 515 064 971 670 605 706 142 132 902 335 255 058 965 685 752 794 627 304 304 463 764 380 563 372 751 939 153 157 997 517 315 260 644 717 743 680 031 015 627 970 395 716 860 765 639 188 390 925 881 494 779 445 973 354 002 896 669 980 000 530 396 784 410 834 143 734 822 872 656 355 171 484 958 560 870 013 351 975 894 060 960 765 791 591 874 965 695 846 888 157 889 238 314 151 117 166 610 301 562 570 570 898 787 526 322 602 450 483 567 586 213 011 490 165 696 823 364 297 178 691 140 991 597 069 072 168 305 455 082 341 854 986 895 360 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 ≈

≈ 2.29 × 1021 503
≈ 228 septemillisesexagintacentillion 762 septemilliquinquasexagintacentillion (short scale) / 228 tremillitresoctogintaquingentilliard 762 tremillitresoctogintaquingentillion (long scale)