Difference between revisions of "User:Thomas Lehéricy"
(Added the uniform pentagonal duoprism.) |
|||
Line 22: | Line 22: | ||
|- | |- | ||
!{3,3,3} simplex, size 2||2016-02-26||3 | !{3,3,3} simplex, size 2||2016-02-26||3 | ||
+ | |- | ||
+ | !{5}x{5} uniform pentagonal duoprism, size 3||2016-04-30||855 (world record) | ||
|- | |- | ||
|} | |} | ||
Line 613: | Line 615: | ||
45,-1,1 32,-1,1. | 45,-1,1 32,-1,1. | ||
</pre> | </pre> | ||
+ | |||
+ | |||
+ | |||
+ | = {5}x{5} 3 = | ||
+ | |||
+ | I started building a 2*2 block and add F2L pairs to it, leaving one "face" of each prism hyperface free. This step was simple and allowed me to get most of it done in under 260 moves. However, solving the rest proved very move-consuming (everything but last hyperface done in 473 moves, orientation of the last hyperface in 67 moves), and solving the last hyperface was extremely inefficient (315 moves). One reason of this inefficiency is that the "regrip" method (which is Raymond Zhao's RKT method) is inapplicable due to the lack of symmetry in the hyperface. I first solved a part of the bottom two layers in 136 moves, then I had to use long 4D commutators to place the edges (104 moves) and the corners (76 moves). | ||
+ | |||
+ | |||
+ | MagicCube4D 3 0 855 {5}x{5} 3 | ||
+ | -0.9971855537773773 0.06814755973026763 -0.0312547119501923 1.5627355975134216E-4 | ||
+ | -0.06309623203940026 -0.5376437859487554 0.8407974497013736 -0.00420398724850671 | ||
+ | 0.012513612145406324 0.2597020978746492 0.16224489159495925 -0.9518796273804374 | ||
+ | 0.03851293745236616 0.7992808579548274 0.5155185609732369 0.3064432688898038 | ||
+ | * | ||
+ | 122,1,2 274,-1,1 55,-1,1 130,1,1 325,-1,1 87,1,2 262,1,2 185,1,1 291,1,2 242,-1,1 | ||
+ | 179,-1,1 261,1,1 326,1,2 157,-1,1 31,1,1 208,1,2 30,-1,2 228,-1,1 317,1,1 226,1,2 | ||
+ | 130,1,1 307,1,1 57,1,1 314,1,2 21,-1,1 162,1,1 57,-1,2 242,-1,1 159,1,2 251,-1,1 | ||
+ | 289,1,1 193,-1,1 245,1,2 156,1,2 260,-1,1 175,1,1 92,-1,1 179,1,2 242,-1,2 28,1,1 | ||
+ | 152,1,1 284,1,1 175,-1,1 125,1,2 245,-1,1 58,1,1 218,1,2 94,1,2 54,-1,2 292,-1,1 | ||
+ | 95,1,1 278,-1,1 225,-1,1 326,-1,1 58,1,2 94,-1,2 275,-1,2 97,1,2 160,1,1 28,-1,1 | ||
+ | 248,1,2 96,1,2 289,-1,1 176,-1,2 m| 209,1,1 26,1,1 191,1,1 26,-1,1 58,-1,1 | ||
+ | 58,-1,1 161,1,1 229,1,1 295,1,1 295,1,1 262,-1,1 262,-1,1 157,1,1 157,1,1 327,1,1 | ||
+ | 327,1,1 26,1,1 26,1,1 284,1,1 157,-1,1 295,-1,1 129,1,1 25,1,1 295,1,1 25,-1,1 | ||
+ | 25,-1,1 295,1,1 295,1,1 25,1,1 295,1,1 95,1,1 158,1,1 258,1,1 158,-1,1 229,-1,1 | ||
+ | 295,1,1 295,1,1 128,1,1 262,-1,1 121,1,1 229,-1,1 61,1,1 229,1,1 94,1,1 229,1,1 | ||
+ | 127,1,1 229,-1,1 94,1,1 229,-1,1 61,1,1 229,-1,1 28,1,1 327,-1,1 26,1,1 262,1,1 | ||
+ | 26,-1,1 26,-1,1 262,1,1 26,1,1 26,1,1 229,-1,1 327,-1,1 157,1,1 229,-1,1 124,1,1 | ||
+ | 327,-1,1 327,-1,1 124,-1,1 327,1,1 226,1,1 196,1,1 196,1,1 119,1,1 196,-1,1 126,1,1 | ||
+ | 229,-1,1 196,-1,1 92,-1,1 295,-1,1 92,1,1 92,1,1 215,1,1 259,1,1 292,1,1 259,1,1 | ||
+ | 215,1,1 182,1,1 314,1,1 182,1,1 215,1,1 295,1,1 92,1,1 92,1,1 324,1,1 92,-1,1 | ||
+ | 92,-1,1 262,1,1 262,1,1 124,-1,1 262,-1,1 262,-1,1 295,-1,1 325,-1,1 295,1,1 317,1,1 | ||
+ | 327,1,1 124,-1,1 327,-1,1 124,1,1 124,1,1 262,-1,1 121,1,1 295,1,1 295,1,1 124,-1,1 | ||
+ | 129,1,1 124,-1,1 262,-1,1 124,-1,1 295,1,1 124,-1,1 262,-1,1 124,-1,1 262,1,1 124,1,1 | ||
+ | 295,1,1 124,-1,1 124,-1,1 295,-1,1 124,1,1 124,1,1 262,1,1 124,-1,1 262,-1,1 327,-1,1 | ||
+ | 124,1,1 327,1,1 124,-1,1 124,-1,1 295,-1,1 327,1,1 124,-1,1 327,1,1 327,1,1 124,-1,1 | ||
+ | 327,1,1 327,1,1 124,1,1 124,1,1 327,1,1 124,-1,1 124,-1,1 327,-1,1 124,1,1 124,1,1 | ||
+ | 262,-1,1 124,1,1 119,1,1 295,-1,1 295,-1,1 327,-1,1 119,1,1 327,1,1 124,-1,1 295,1,1 | ||
+ | 124,-1,1 295,-1,1 327,1,1 124,1,1 295,1,1 124,1,1 327,1,1 124,1,1 295,-1,1 295,-1,1 | ||
+ | 122,1,1 327,1,1 295,1,1 124,1,1 295,1,1 327,1,1 327,1,1 124,1,1 295,-1,1 124,-1,1 | ||
+ | 124,-1,1 295,-1,1 327,-1,1 327,-1,1 130,1,1 327,1,1 295,-1,1 295,-1,1 124,1,1 295,1,1 | ||
+ | 295,1,1 124,-1,1 327,1,1 124,1,1 295,-1,1 124,1,1 327,-1,1 124,1,1 327,-1,1 295,1,1 | ||
+ | 124,-1,1 124,-1,1 295,-1,1 295,-1,1 126,1,1 295,1,1 295,1,1 124,-1,1 124,-1,1 295,-1,1 | ||
+ | 124,-1,1 295,1,1 124,-1,1 124,-1,1 295,-1,1 124,1,1 295,1,1 124,-1,1 295,-1,1 124,-1,1 | ||
+ | 327,1,1 124,1,1 327,-1,1 123,1,1 327,-1,1 124,1,1 327,1,1 124,-1,1 327,1,1 124,-1,1 | ||
+ | 327,-1,1 124,1,1 124,1,1 295,-1,1 327,-1,1 124,1,1 124,1,1 327,1,1 130,1,1 295,1,1 | ||
+ | 124,1,1 327,1,1 124,-1,1 124,-1,1 327,1,1 124,1,1 327,-1,1 124,-1,1 327,-1,1 124,1,1 | ||
+ | 295,-1,1 124,-1,1 124,-1,1 327,1,1 124,-1,1 327,-1,1 124,-1,1 124,-1,1 327,1,1 124,1,1 | ||
+ | 327,1,1 327,1,1 124,-1,1 327,-1,1 124,1,1 124,1,1 327,1,1 124,-1,1 327,-1,1 130,1,1 | ||
+ | 327,1,1 124,1,1 327,-1,1 124,-1,1 327,-1,1 124,1,1 327,-1,1 124,-1,1 327,-1,1 129,1,1 | ||
+ | 124,1,1 327,1,1 124,-1,1 124,-1,1 327,-1,1 124,1,1 124,1,1 327,-1,1 124,-1,1 124,-1,1 | ||
+ | 327,1,1 327,1,1 124,-1,1 327,1,1 327,1,1 124,-1,1 327,1,1 124,1,1 327,-1,1 123,1,1 | ||
+ | 327,-1,1 124,1,1 327,1,1 124,-1,1 327,1,1 124,-1,1 327,-1,1 124,-1,1 327,-1,1 130,1,1 | ||
+ | 327,1,1 124,1,1 327,-1,1 327,-1,1 130,1,1 327,1,1 327,1,1 124,-1,1 124,-1,1 327,-1,1 | ||
+ | 130,1,1 327,1,1 130,1,1 124,-1,1 124,-1,1 327,1,1 124,1,1 124,1,1 327,1,1 124,1,1 | ||
+ | 327,-1,1 327,-1,1 124,1,1 124,1,1 125,-1,1 125,-1,1 328,-1,1 125,1,1 328,1,1 130,1,1 | ||
+ | 328,1,1 130,-1,1 328,-1,1 125,-1,1 328,-1,1 328,-1,1 125,1,1 125,1,1 328,1,1 125,-1,1 | ||
+ | 328,1,1 125,1,1 328,-1,1 125,-1,1 125,-1,1 328,1,1 125,1,1 328,-1,1 130,1,1 328,1,1 | ||
+ | 328,1,1 130,1,1 328,1,1 125,1,1 328,1,1 125,-1,1 328,-1,1 125,1,1 328,1,1 328,1,1 | ||
+ | 125,-1,1 328,-1,1 125,-1,1 328,-1,1 125,1,1 125,1,1 328,-1,1 125,-1,1 125,-1,1 328,1,1 | ||
+ | 328,1,1 125,1,1 125,1,1 328,1,1 130,1,1 328,-1,1 328,-1,1 130,1,1 328,1,1 125,-1,1 | ||
+ | 328,1,1 125,1,1 328,1,1 125,-1,1 328,1,1 125,-1,1 328,1,1 125,1,1 125,1,1 328,1,1 | ||
+ | 125,-1,1 125,-1,1 328,-1,1 328,-1,1 125,1,1 328,1,1 125,1,1 328,-1,1 125,-1,1 328,-1,1 | ||
+ | 125,1,1 328,1,1 328,1,1 125,-1,1 328,1,1 125,1,1 328,-1,1 328,-1,1 125,-1,1 328,1,1 | ||
+ | 125,1,1 328,-1,1 125,-1,1 328,1,1 125,1,1 328,-1,1 130,1,1 328,-1,1 328,-1,1 130,1,1 | ||
+ | 125,-1,1 328,1,1 125,1,1 328,1,1 125,-1,1 328,-1,1 328,-1,1 125,1,1 328,-1,1 328,-1,1 | ||
+ | 125,-1,1 328,-1,1 125,1,1 328,-1,1 125,-1,1 328,1,1 328,1,1 125,1,1 328,-1,1 125,-1,1 | ||
+ | 328,1,1 328,1,1 125,1,1 328,-1,1 125,-1,1 328,-1,1 125,1,1 292,1,1 261,1,1 261,1,1 | ||
+ | 259,1,1 228,1,1 226,1,1 195,-1,1 195,-1,1 226,1,1 259,1,1 292,1,1 159,1,1 262,-1,1 | ||
+ | 262,-1,1 154,1,1 229,1,1 229,1,1 158,-1,1 158,-1,1 327,1,1 327,1,1 158,1,1 158,1,1 | ||
+ | 229,-1,1 229,-1,1 154,1,1 262,1,1 262,1,1 159,1,1 196,-1,1 163,1,1 327,-1,1 163,1,1 | ||
+ | 93,1,1 262,-1,1 262,-1,1 88,1,1 229,1,1 229,1,1 91,-1,1 91,-1,1 64,-1,1 327,-1,1 | ||
+ | 64,1,1 327,1,1 91,1,1 91,1,1 229,-1,1 229,-1,1 88,1,1 262,1,1 262,1,1 91,1,1 | ||
+ | 91,1,1 97,1,1 196,1,1 124,-1,1 124,-1,1 327,-1,1 327,-1,1 124,1,1 124,1,1 327,1,1 | ||
+ | 327,1,1 124,-1,1 124,-1,1 327,1,1 124,1,1 124,1,1 327,1,1 327,1,1 124,-1,1 124,-1,1 | ||
+ | 327,-1,1 327,-1,1 124,1,1 124,1,1 327,-1,1 196,-1,1 196,-1,1 97,1,1 327,-1,1 97,1,1 | ||
+ | 327,1,1 295,-1,1 295,-1,1 64,1,1 327,-1,1 64,1,1 196,1,1 196,1,1 64,1,1 327,1,1 | ||
+ | 64,1,1 31,1,1 327,1,1 31,-1,1 295,1,1 295,1,1 31,1,1 327,-1,1 31,1,1 64,1,1 | ||
+ | 327,-1,1 64,1,1 327,1,1 97,1,1 327,-1,1 196,-1,1 97,1,1 327,-1,1 97,1,1 196,1,1 | ||
+ | 97,1,1 327,1,1 327,1,1 97,1,1 196,-1,1 97,1,1 327,-1,1 97,1,1 196,1,1 327,-1,1 | ||
+ | 97,1,1 327,1,1 327,1,1 163,1,1 196,1,1 196,1,1 163,1,1 327,1,1 163,1,1 196,-1,1 | ||
+ | 196,-1,1 163,1,1 327,-1,1 130,1,1 327,1,1 130,1,1 327,-1,1 91,-1,1 91,-1,1 229,1,1 | ||
+ | 91,1,1 91,1,1 229,1,1 91,-1,1 91,-1,1 229,-1,1 229,-1,1 91,1,1 91,1,1 327,-1,1 | ||
+ | 91,-1,1 91,-1,1 229,1,1 229,1,1 91,1,1 91,1,1 229,-1,1 91,-1,1 91,-1,1 229,-1,1 | ||
+ | 91,1,1 91,1,1 327,-1,1 91,-1,1 91,-1,1 229,1,1 91,1,1 91,1,1 229,1,1 91,-1,1 | ||
+ | 91,-1,1 229,-1,1 229,-1,1 91,1,1 91,1,1 327,1,1 327,1,1 91,-1,1 91,-1,1 229,1,1 | ||
+ | 229,1,1 91,1,1 91,1,1 229,-1,1 91,-1,1 91,-1,1 229,-1,1 91,1,1 91,1,1 196,-1,1 | ||
+ | 130,1,1 196,-1,1 130,1,1 327,1,1 130,1,1 196,1,1 130,1,1 327,-1,1 196,1,1 130,1,1 | ||
+ | 327,1,1 130,1,1 327,-1,1 130,1,1 196,1,1 130,1,1 327,1,1 130,1,1 196,-1,1 130,1,1 | ||
+ | 327,-1,1 97,1,1 91,-1,1 91,-1,1 262,-1,1 262,-1,1 91,1,1 91,1,1 196,-1,1 196,-1,1 | ||
+ | 91,-1,1 91,-1,1 262,1,1 262,1,1 91,1,1 91,1,1 196,1,1 196,1,1 91,-1,1 91,-1,1 | ||
+ | 262,-1,1 262,-1,1 91,1,1 91,1,1 327,-1,1 91,-1,1 91,-1,1 262,1,1 262,1,1 91,1,1 | ||
+ | 91,1,1 196,-1,1 196,-1,1 91,-1,1 91,-1,1 262,-1,1 262,-1,1 91,1,1 91,1,1 196,1,1 | ||
+ | 196,1,1 91,-1,1 91,-1,1 262,1,1 262,1,1 91,1,1 91,1,1 327,1,1 97,1,1 130,1,1 | ||
+ | 196,-1,1 130,1,1 196,1,1 130,1,1 91,-1,1 91,-1,1 262,-1,1 262,-1,1 91,1,1 91,1,1 | ||
+ | 196,-1,1 196,-1,1 91,-1,1 91,-1,1 262,1,1 262,1,1 91,1,1 91,1,1 196,1,1 196,1,1 | ||
+ | 91,-1,1 91,-1,1 262,-1,1 262,-1,1 91,1,1 91,1,1 327,-1,1 91,-1,1 91,-1,1 262,1,1 | ||
+ | 262,1,1 91,1,1 91,1,1 196,-1,1 196,-1,1 91,-1,1 91,-1,1 262,-1,1 262,-1,1 91,1,1 | ||
+ | 91,1,1 196,1,1 196,1,1 91,-1,1 91,-1,1 262,1,1 262,1,1 91,1,1 91,1,1 327,1,1 | ||
+ | 130,1,1 196,-1,1 130,1,1 196,1,1 130,1,1 324,1,1 91,-1,1 229,-1,1 91,1,1 229,-1,1 | ||
+ | 91,-1,1 229,1,1 229,1,1 91,1,1 327,1,1 91,-1,1 229,-1,1 229,-1,1 91,1,1 229,1,1 | ||
+ | 91,-1,1 229,1,1 91,1,1 327,-1,1 91,-1,1 229,-1,1 91,1,1 229,-1,1 91,-1,1 229,1,1 | ||
+ | 229,1,1 91,1,1 324,1,1 91,-1,1 229,-1,1 229,-1,1 91,1,1 229,1,1 91,-1,1 229,1,1 | ||
+ | 91,1,1 327,-1,1 327,-1,1 91,-1,1 229,-1,1 91,1,1 229,-1,1 91,-1,1 229,1,1 229,1,1 | ||
+ | 91,1,1 327,-1,1 327,-1,1 91,-1,1 229,-1,1 229,-1,1 91,1,1 229,1,1 91,-1,1 229,1,1 | ||
+ | 91,1,1 327,-1,1 327,-1,1 91,-1,1 229,-1,1 91,1,1 229,-1,1 91,-1,1 229,1,1 229,1,1 | ||
+ | 91,1,1 327,1,1 91,-1,1 229,-1,1 229,-1,1 91,1,1 229,1,1 91,-1,1 229,1,1 91,1,1. |
Revision as of 06:58, 30 April 2016
I started solving 4D puzzles in february 2016. I designed a 4D analogue of CFOP, which is very close to Sheerin-Zhao method , for the 2^4 to 4^4. I also designed another, less visual method, that allowed me to break Sheerin's 227 moves world record for the 3^4, though a computer helped at one point in the solve.
Contents
Solved MC4D Puzzles
Dates are in yyyy-mm-dd, according to ISO 8601.
Type | Date of the first solve | Number of twists of the shortest solve |
---|---|---|
2^4 | 2016-02-12 | 199 |
3^4 | 2016-02-12 | 709 |
3^4 (computer assisted) | 2016-02-22 | 205 (world record) |
4^4 | 2016-02-22 | 1775 |
{6}x{4} hexagonal duoprism, size 3 | 2016-02-25 | 1041 (world record) |
{3,3,3} simplex, size 2 | 2016-02-26 | 3 |
{5}x{5} uniform pentagonal duoprism, size 3 | 2016-04-30 | 855 (world record) |
Sketch of my method
It was inspired by Thistlethwaite's method. In a similar manner, the first step separate the pieces and adjust their orientation until the tesseract is solvable using only a given, restricted set of moves. Then, using only moves in this group, we solve the tesseract as a whole.
The method is designed to be executed without the help of a computer, hence visual recognition plays a key role. Executed correctly, it can easily yield solutions under 300 moves. However, it is not a fast method, and I strongly advise to keep a piece of paper at hand to avoid mistakes.
Nested cubes
When looking at a visual representation of the tesseract, one sees a central hyperface that looks like a cube, surrounded by six lateral hyperfaces looking like distorted cubes. There is another outside, which is turned inside-out and invisible. I will call it external hyperface.
Take a closer look at the lateral hyperfaces. The cubies that are closer to the central hyperface form a 3x3x3, 3D cube. The cubies that are closer to the external hyperface form another, and the cubies that are at the same distance of both form a third 3D cube. I call them "inner cube", "outer cube" and "intermediate cube". These three cubes will play a great role in my method: in the first step, one puts the cubies that belong in the intermediate cube in the intermediate cube, without taking care of their exact position at the moment. Then one does the same for the cubies that belong in the inner and outer cube, and make sure that the obtained cubes are solvable (e.g. without parity). In the second step, one solves the three cubes using only "regrips" (re-orientation of one or more of the three cubes) and lateral hyperface turns that do not move cubies from one cube to another.
Summary of the method
- Separate the cubies that belong to the intermediate cube, minding the parity of the polarization.
- Polarize the cubies in the inner and outer cube.
- Separate the cubies of the inner and outer cube, taking care of all remaining invariants.
- Solve the three cubes.
You probably noticed the use of the word "polarize". I use it to denote that I "pre-orient" the cubies. An inner or outer cubie is correctly polarized when the little cube that belongs to the central/external hyperface is in the central/external hyperface, and not in one of the lateral hyperfaces. Intermediate cubies are a bit different, so let's take an image. Take a corner of a 3D rubik's cube, and switch two of its facelets. The 3D cube is then no longer solvable. Obviously this case never happens in 3D, but in 4D it might happen if the cubie is incorrectly inserted. Such a cubie is incorrectly polarized. An even number of incorrectly polarized corners can be solved in step 3, but not an odd number, so it is important to keep track of it in step 1.
In my 205 moves solve, the first step took 24 moves, the second step 66, the third step 46, and the last one 69. The last step is probably the longest one of the four, since it requires to solve several cubes simultaneously; I used a QTM solver to get efficient sequences to solve each of them, and combined them by hand to finish the 4D solution. All the other steps were done by hand. Being good at 3D fewest move solving is definitely a huge plus to get this step done efficiently.
A fluent user of this method could merge the first two steps and probably prepare the third one at the same time. I would not recommend it for the first tries, since there are lots of 3D invariants to keep track of, most of them are not visible at all (e.g. parity of edge and corner permutations).
2^4
- 2^4 (199 twists)
MagicCube4D 3 0 199 {4,3,3} 2 -3.494003191217937E-10 7.267831155007101E-11 -7.998440753343228E-11 1.0 0.9553434707139483 -0.1987216460949897 0.21869741730876674 3.6573245059754363E-10 -0.2903481327144837 -0.4937052085518607 0.8197274723211222 -6.530533496034315E-16 0.05492553862676054 0.8466196751919137 0.5293565063211172 3.7873817085531327E-16 * 22,1,2 137,1,2 47,1,2 212,-1,1 79,-1,2 6,-1,1 158,1,2 130,1,1 54,1,1 50,1,2 21,1,1 169,1,2 25,1,2 155,1,2 50,-1,2 3,-1,1 50,-1,2 115,1,2 184,1,1 156,-1,1 m| 104,-1,1 79,1,1 79,1,1 187,1,1 5,1,1 22,-1,1 76,1,1 103,-1,1 101,1,1 186,-1,1 23,-1,1 23,-1,1 186,1,1 82,1,1 186,-1,1 23,1,1 23,1,1 101,-1,1 186,1,1 101,1,1 186,1,1 25,-1,1 82,1,1 25,-1,1 25,-1,1 21,-1,1 105,-1,1 21,-1,1 105,1,1 21,1,1 101,-1,1 22,1,1 101,-1,1 105,1,1 21,-1,1 105,-1,1 21,1,1 101,-1,1 m[ 25,-1,1 104,-1,1 25,1,1 104,-1,1 25,-1,1 104,1,1 104,1,1 25,1,1 m] 103,1,1 m[ 20,-1,1 103,-1,1 20,1,1 103,-1,1 20,-1,1 103,1,1 103,1,1 20,1,1 m] 76,1,1 185,-1,1 51,-1,1 m[ 185,-1,1 212,-1,1 185,1,1 212,1,1 185,-1,1 212,-1,1 100,1,1 212,1,1 185,1,1 212,-1,1 185,-1,1 212,1,1 185,1,1 100,1,1 m] m[ 51,1,1 185,1,1 76,-1,1 m] 21,-1,1 m[ 212,-1,1 185,-1,1 212,1,1 185,1,1 212,-1,1 185,-1,1 100,1,1 185,1,1 212,1,1 185,-1,1 212,-1,1 185,1,1 212,1,1 100,1,1 m] m[ 21,1,1 m] 158,-1,1 158,-1,1 212,-1,1 78,1,1 m[ 158,-1,1 185,-1,1 158,1,1 185,1,1 158,-1,1 185,-1,1 96,1,1 185,1,1 158,1,1 185,-1,1 158,-1,1 185,1,1 158,1,1 96,1,1 m] m[ 78,-1,1 212,1,1 158,1,1 158,1,1 m] 158,-1,1 49,1,1 49,1,1 104,-1,1 49,1,1 49,1,1 158,1,1 104,1,1 104,1,1 105,1,1 212,1,1 185,-1,1 212,1,1 185,1,1 106,-1,1 185,-1,1 212,-1,1 185,1,1 212,-1,1 212,-1,1 212,-1,1 106,1,1 158,-1,1 212,-1,1 86,1,1 104,1,1 212,1,1 158,1,1 104,-1,1 86,-1,1 212,-1,1 212,-1,1 50,-1,1 212,-1,1 50,1,1 212,-1,1 50,-1,1 212,1,1 212,1,1 50,1,1 m[ 50,-1,1 212,-1,1 212,-1,1 50,1,1 212,1,1 50,-1,1 212,1,1 50,1,1 m] m[ 50,-1,1 212,-1,1 50,1,1 212,-1,1 50,-1,1 212,1,1 212,1,1 50,1,1 m] 106,1,1 m[ 50,-1,1 212,-1,1 212,-1,1 50,1,1 212,1,1 50,-1,1 212,1,1 50,1,1 m] 106,-1,1 158,-1,1 106,-1,1 158,1,1 106,1,1 158,-1,1 106,1,1 158,1,1 158,1,1 106,-1,1 158,1,1 106,-1,1 158,-1,1 106,1,1 158,-1,1 106,1,1 158,-1,1 158,-1,1 106,-1,1 158,-1,1 158,-1,1.
3^4
- 3^4 (709 twists)
MagicCube4D 3 0 709 {4,3,3} 3 -0.8040042269235915 -0.13858746425597337 0.5772023489620283 -0.03475868514219044 0.5896647891091352 -0.2787709052791679 0.7569008266564182 0.04102873945837629 0.05270585295558059 0.9488269360307904 0.3050027176355887 0.06263290478297173 -0.05563032121156277 -0.05298813625100663 -0.030198165415355353 0.9965869734168163 * 16,-1,1 141,-1,1 89,1,1 30,1,2 136,1,2 172,1,2 128,-1,1 148,1,4 92,1,4 199,1,1 145,1,4 129,1,1 17,1,4 133,-1,4 66,1,1 176,1,2 90,1,1 73,1,1 84,1,4 72,1,1 210,1,2 49,-1,4 97,-1,2 72,-1,4 114,-1,4 167,-1,1 136,1,1 86,-1,2 186,1,2 72,1,2 193,1,2 72,-1,4 102,1,4 184,1,4 20,-1,1 171,1,1 54,-1,2 190,-1,4 56,-1,1 41,-1,1 206,-1,2 119,1,1 185,1,4 149,1,1 94,1,4 153,-1,2 m| 214,-1,1 214,-1,1 130,-1,1 48,-1,1 52,1,1 106,-1,1 78,1,1 158,1,1 182,1,1 130,-1,1 74,-1,1 105,-1,1 74,1,1 78,1,1 22,1,1 78,-1,1 182,-1,1 155,-1,1 132,1,1 23,1,1 23,1,1 132,-1,1 50,1,1 185,-1,1 21,1,1 21,1,1 185,1,1 105,-1,1 21,-1,1 105,1,1 21,-1,1 50,-1,1 75,-1,1 22,-1,1 75,1,1 49,1,1 158,1,1 49,-1,1 158,-1,1 118,1,1 21,-1,1 118,1,1 50,1,1 20,1,1 20,1,1 50,-1,1 48,1,1 21,1,1 48,-1,1 119,1,1 21,1,1 119,1,1 22,1,1 105,-1,1 22,1,1 22,1,1 105,1,1 130,1,1 21,-1,1 130,-1,1 20,1,1 20,1,1 129,-1,1 21,1,1 23,1,1 23,1,1 129,1,1 79,1,1 184,1,1 78,-1,1 79,1,1 79,1,1 184,-1,1 78,-1,1 184,1,1 25,1,1 25,1,1 184,-1,1 48,1,1 21,-1,1 48,-1,1 103,1,1 21,-1,1 103,-1,1 184,-1,1 22,1,1 184,1,1 76,-1,1 22,1,1 22,1,1 76,1,1 25,1,1 104,-1,1 25,1,1 104,1,1 13,1,1 130,-1,1 23,1,1 23,1,1 130,1,1 25,-1,1 104,-1,1 25,-1,1 104,1,1 17,1,1 21,1,1 76,-1,1 21,1,1 21,1,1 76,1,1 132,-1,1 25,1,1 132,1,1 7,-1,1 21,1,1 103,1,1 22,1,1 22,1,1 103,-1,1 184,1,1 22,1,1 184,-1,1 128,1,1 184,1,1 22,-1,1 184,-1,1 128,-1,1 18,1,1 186,1,1 25,1,1 25,1,1 186,-1,1 102,-1,1 24,-1,1 102,1,1 22,1,1 78,1,1 21,1,1 21,1,1 78,-1,1 77,-1,1 20,1,1 77,1,1 103,-1,1 21,1,1 103,1,1 105,1,1 25,1,1 105,-1,1 24,-1,1 105,1,1 24,1,1 105,-1,1 1,1,1 186,-1,1 25,1,1 25,1,1 186,1,1 78,-1,1 25,1,1 78,1,1 11,1,1 24,1,1 105,1,1 22,1,1 22,1,1 105,-1,1 21,-1,1 21,-1,1 m[ 76,-1,1 25,-1,1 76,1,1 25,-1,1 76,-1,1 25,1,1 25,1,1 76,1,1 m] 22,-1,1 m[ 158,-1,1 25,-1,1 158,1,1 25,-1,1 158,-1,1 25,1,1 25,1,1 158,1,1 m] 22,1,1 21,1,1 m[ 49,-1,1 21,-1,1 49,1,1 21,-1,1 49,-1,1 21,1,1 21,1,1 49,1,1 m] 22,1,1 22,1,1 m[ 183,-1,1 22,-1,1 183,1,1 22,-1,1 183,-1,1 22,1,1 22,1,1 183,1,1 m] 25,-1,1 24,1,1 m[ 50,-1,1 24,-1,1 50,1,1 24,-1,1 50,-1,1 24,1,1 24,1,1 50,1,1 m] 22,1,1 20,1,1 m[ 103,-1,1 20,-1,1 103,1,1 20,-1,1 103,-1,1 20,1,1 20,1,1 103,1,1 m] 20,-1,1 23,1,1 211,-1,1 m[ 156,-1,1 23,-1,1 156,1,1 23,-1,1 156,-1,1 23,1,1 23,1,1 156,1,1 m] 20,1,1 20,1,1 214,-1,1 m[ 77,-1,1 20,-1,1 77,1,1 20,-1,1 77,-1,1 20,1,1 20,1,1 77,1,1 m] 22,-1,1 21,1,1 213,1,1 m[ 105,-1,1 21,-1,1 105,1,1 21,-1,1 105,-1,1 21,1,1 21,1,1 105,1,1 m] 21,-1,1 213,1,1 m[ 49,-1,1 21,-1,1 49,1,1 21,-1,1 49,-1,1 21,1,1 21,1,1 49,1,1 m] 22,1,1 212,-1,1 m[ 183,-1,1 22,-1,1 183,1,1 22,-1,1 183,-1,1 22,1,1 22,1,1 183,1,1 m] 20,-1,1 22,-1,1 212,1,1 m[ 51,-1,1 22,-1,1 51,1,1 22,-1,1 51,-1,1 22,1,1 22,1,1 51,1,1 m] 24,1,1 209,-1,1 m[ 104,-1,1 25,-1,1 104,1,1 25,-1,1 104,-1,1 25,1,1 25,1,1 104,1,1 m] 211,-1,1 24,-1,1 76,1,1 22,-1,1 76,-1,1 184,-1,1 22,1,1 184,1,1 22,1,1 76,1,1 22,-1,1 76,-1,1 22,-1,1 65,1,1 187,-1,1 106,-1,1 17,1,1 106,1,1 187,1,1 17,1,1 65,1,1 184,-1,1 25,1,1 25,1,1 184,1,1 22,-1,1 24,1,1 184,-1,1 25,1,1 25,1,1 184,1,1 m[ 184,-1,1 24,-1,1 184,1,1 24,-1,1 184,-1,1 24,1,1 24,1,1 184,1,1 m] 210,1,1 m[ 184,-1,1 24,-1,1 24,-1,1 184,1,1 24,1,1 184,-1,1 24,1,1 184,1,1 m] 210,-1,1 1,-1,1 m[ 75,-1,1 22,-1,1 75,1,1 22,-1,1 75,-1,1 22,1,1 22,1,1 75,1,1 m] m[ 131,-1,1 20,-1,1 20,-1,1 131,1,1 20,1,1 131,-1,1 20,1,1 131,1,1 m] 8,1,1 52,1,1 106,1,1 106,1,1 52,-1,1 m[ 75,-1,1 22,-1,1 75,1,1 22,-1,1 75,-1,1 22,1,1 22,1,1 75,1,1 m] m[ 52,1,1 106,-1,1 106,-1,1 52,-1,1 m] 21,1,1 m[ 78,-1,1 25,-1,1 78,1,1 25,-1,1 78,-1,1 25,1,1 25,1,1 78,1,1 m] 21,1,1 m[ 51,-1,1 24,-1,1 51,1,1 24,-1,1 51,-1,1 24,1,1 24,1,1 51,1,1 m] 74,1,1 133,1,1 74,-1,1 101,1,1 101,1,1 160,1,1 133,1,1 182,1,1 133,-1,1 m[ 133,-1,1 52,-1,1 10,1,1 52,1,1 133,1,1 10,1,1 m] m[ 133,1,1 182,-1,1 133,-1,1 160,-1,1 101,-1,1 101,-1,1 74,1,1 133,-1,1 74,-1,1 m] 52,1,1 160,-1,1 52,-1,1 m[ 160,-1,1 52,-1,1 11,1,1 52,1,1 160,1,1 11,1,1 m] m[ 52,1,1 160,1,1 52,-1,1 m] 52,1,1 52,1,1 74,1,1 74,1,1 m[ 133,-1,1 52,-1,1 10,1,1 52,1,1 133,1,1 10,1,1 m] m[ 74,-1,1 74,-1,1 52,-1,1 52,-1,1 m] 129,-1,1 50,-1,1 133,-1,1 187,-1,1 133,1,1 m[ 133,-1,1 79,-1,1 13,1,1 79,1,1 133,1,1 13,1,1 m] m[ 133,-1,1 187,1,1 133,1,1 50,1,1 129,1,1 m] m[ 16,-1,1 187,1,1 79,1,1 16,-1,1 79,-1,1 187,-1,1 m] 133,-1,1 159,1,1 m[ 187,1,1 133,1,1 18,1,1 133,-1,1 187,-1,1 18,1,1 m] m[ 159,-1,1 133,1,1 m] 128,1,1 128,1,1 47,-1,1 79,1,1 78,1,1 m[ 187,1,1 106,1,1 17,1,1 106,-1,1 187,-1,1 17,1,1 m] m[ 78,-1,1 79,-1,1 47,1,1 128,-1,1 128,-1,1 m] 133,-1,1 187,-1,1 79,-1,1 187,1,1 m[ 16,-1,1 187,1,1 79,1,1 16,-1,1 79,-1,1 187,-1,1 m] m[ 187,-1,1 79,1,1 187,1,1 133,1,1 m] 133,1,1 m[ 187,-1,1 133,-1,1 18,1,1 133,1,1 187,1,1 18,1,1 m] m[ 133,-1,1 m] 133,1,1 133,1,1 m[ 15,-1,1 133,1,1 160,1,1 15,-1,1 160,-1,1 133,-1,1 m] m[ 133,-1,1 133,-1,1 m] 47,-1,1 133,1,1 133,1,1 105,1,1 m[ 133,-1,1 187,-1,1 133,1,1 187,1,1 133,-1,1 187,-1,1 18,1,1 187,1,1 133,1,1 187,-1,1 133,-1,1 187,1,1 133,1,1 18,1,1 m] m[ 105,-1,1 133,-1,1 133,-1,1 47,1,1 m] 156,-1,1 m[ 79,-1,1 133,-1,1 79,1,1 133,1,1 79,-1,1 133,-1,1 13,1,1 133,1,1 79,1,1 133,-1,1 79,-1,1 133,1,1 79,1,1 13,1,1 m] m[ 156,1,1 m] 49,1,1 m[ 187,-1,1 106,-1,1 187,1,1 106,1,1 187,-1,1 106,-1,1 17,1,1 106,1,1 187,1,1 106,-1,1 187,-1,1 106,1,1 187,1,1 17,1,1 m] m[ 49,-1,1 m] 187,1,1 187,1,1 49,-1,1 m[ 187,-1,1 79,-1,1 187,1,1 79,1,1 187,-1,1 79,-1,1 16,1,1 79,1,1 187,1,1 79,-1,1 187,-1,1 79,1,1 187,1,1 16,1,1 m] m[ 49,1,1 187,-1,1 187,-1,1 m] 74,-1,1 187,1,1 187,1,1 51,1,1 m[ 187,-1,1 160,-1,1 187,1,1 160,1,1 187,-1,1 160,-1,1 19,1,1 160,1,1 187,1,1 160,-1,1 187,-1,1 160,1,1 187,1,1 19,1,1 m] m[ 51,-1,1 187,-1,1 187,-1,1 74,1,1 m] 187,-1,1 m[ 187,1,1 79,1,1 187,-1,1 79,-1,1 187,1,1 79,1,1 16,1,1 79,-1,1 187,-1,1 79,1,1 187,1,1 79,-1,1 187,-1,1 16,1,1 m] m[ 187,1,1 m] 128,-1,1 187,-1,1 m[ 187,1,1 106,1,1 187,-1,1 106,-1,1 187,1,1 106,1,1 17,1,1 106,-1,1 187,-1,1 106,1,1 187,1,1 106,-1,1 187,-1,1 17,1,1 m] 187,1,1 128,1,1 101,-1,1 74,-1,1 m[ 187,-1,1 160,-1,1 187,1,1 160,1,1 187,-1,1 160,-1,1 19,1,1 160,1,1 187,1,1 160,-1,1 187,-1,1 160,1,1 187,1,1 19,1,1 m] m[ 74,1,1 101,1,1 m] 74,1,1 74,1,1 187,1,1 74,1,1 74,1,1 187,-1,1 74,1,1 74,1,1 m[ 187,-1,1 160,-1,1 187,1,1 160,1,1 187,-1,1 160,-1,1 19,1,1 160,1,1 187,1,1 160,-1,1 187,-1,1 160,1,1 187,1,1 19,1,1 m] m[ 74,-1,1 74,-1,1 187,1,1 74,-1,1 74,-1,1 187,-1,1 74,-1,1 74,-1,1 m].
- 3^4, computer assisted (205 twists)
MagicCube4D 3 0 205 {4,3,3} 3 -0.8997433166655988 0.19164929204653675 -0.39208737925830944 -7.31458895189479E-10 -0.43626783779931144 -0.41865797542230265 0.796489719530147 3.647273333369022E-16 0.011503817518623097 -0.8876914151175284 -0.4602951376118788 6.352681615785982E-16 6.581251005515402E-10 -1.4018429604230587E-10 2.867957993407468E-10 -1.0 * 180,1,2 106,-1,2 210,-1,1 29,-1,4 207,1,2 174,1,4 1,-1,1 165,1,4 143,1,4 187,1,1 212,-1,2 121,1,1 15,1,1 104,1,2 214,-1,1 103,-1,2 210,1,4 148,1,2 82,-1,4 186,-1,1 144,1,4 180,-1,1 212,1,2 163,-1,2 64,-1,1 23,-1,1 48,-1,4 125,-1,1 170,-1,2 100,1,4 61,1,4 180,-1,2 195,-1,4 44,1,1 146,1,2 106,-1,2 202,1,2 97,-1,1 170,1,4 90,-1,4 173,1,1 209,-1,4 81,-1,1 17,-1,2 169,-1,1 120,1,2 m| 160,-1,1 79,-1,1 47,-1,1 210,-1,1 102,1,1 197,1,1 128,1,1 192,1,1 128,-1,1 129,-1,1 78,-1,1 214,-1,1 77,1,1 160,1,1 128,1,2 207,1,1 78,1,1 155,-1,1 106,1,1 106,1,1 2,-1,1 159,1,1 14,1,1 105,1,1 214,-1,1 105,-1,1 79,1,1 133,-1,1 155,-1,1 211,1,1 155,1,1 133,1,1 207,1,1 105,1,1 214,1,1 105,-1,1 159,-1,1 160,1,1 52,-1,1 160,-1,1 78,1,1 25,1,1 78,-1,1 132,-1,1 106,1,1 24,-1,1 106,-1,1 47,-1,1 128,1,1 25,1,1 25,1,1 128,-1,1 47,1,1 25,-1,1 132,1,1 78,1,1 25,-1,1 78,-1,1 213,1,1 47,-1,1 79,1,1 187,-1,1 79,-1,1 210,1,1 187,1,1 209,-1,1 160,1,1 190,1,1 95,1,1 186,1,1 131,1,1 213,-1,1 131,-1,1 101,-1,1 52,1,1 200,1,1 52,-1,1 101,-1,1 208,1,1 101,1,1 101,1,1 52,1,1 79,-1,1 214,-1,1 79,1,1 213,-1,1 131,1,1 213,1,1 131,-1,1 186,-1,1 15,1,1 174,1,1 66,1,1 6,-1,1 66,1,1 209,1,1 69,1,1 47,-1,2 133,-1,2 187,1,1 133,-1,1 213,1,1 106,-1,1 187,1,1 187,1,1 21,-1,1 120,1,1 212,-1,1 160,1,1 197,1,1 52,1,2 133,-1,2 210,-1,1 106,-1,1 160,-1,4 12,1,1 133,1,2 133,1,2 160,-1,1 128,-1,2 106,1,1 189,1,1 96,1,1 214,-1,6 79,-1,1 22,1,1 182,1,1 213,1,6 128,1,4 128,1,4 182,-1,1 24,-1,3 128,-1,4 15,1,1 212,-1,1 177,1,1 79,1,1 211,1,2 74,1,1 101,1,1 213,-1,4 106,1,1 206,1,4 212,1,2 74,1,1 214,-1,1 74,1,1 74,1,1 194,-1,2 79,1,1 213,-1,4 106,1,1 194,-1,4 106,1,1 214,-1,2 79,1,1 207,1,4 213,-1,2 187,1,1 213,1,2 106,1,1 202,1,4 79,1,1 211,1,2 47,1,1 197,1,2 201,1,4 182,1,1 79,1,1 210,1,2 211,-1,4 182,1,1 210,-1,4 101,1,1 210,1,2 52,1,1 191,1,1 155,1,1 192,1,4 52,1,1 209,1,1 128,1,1 209,-1,2 128,1,1 209,1,2 198,1,1 155,1,1 206,1,1 106,1,1 155,1,1 155,1,1 200,1,4 155,1,1 211,-1,1 155,1,1 203,1,2 47,1,1 47,1,1 189,1,1 189,-1,4 74,1,1 182,1,1 182,1,1 203,1,4 211,-1,1.
4^4
- 4^4 (1775 twists)
MagicCube4D 3 0 1775 {4,3,3} 4 -0.6730912238560075 -0.36810088722134593 0.6414436383618439 -7.740223782519017E-16 -0.7377330958684748 0.27327310396656157 -0.6173100435832846 6.025457021237758E-17 -1.519774089444722E-10 2.6002491271014107E-9 1.3327127644499361E-9 1.0 -0.05194308065890903 0.8887201738878998 0.45549793511751874 -2.925835943512266E-9 * 22,1,8 29,-1,4 153,1,1 179,1,8 55,-1,2 17,1,1 41,1,4 147,1,8 131,1,8 16,1,2 162,-1,1 212,1,2 46,1,2 94,1,1 51,-1,4 159,-1,4 198,1,2 76,-1,4 87,-1,4 15,1,4 106,1,2 49,1,2 195,-1,1 50,-1,2 155,-1,1 205,-1,1 91,-1,4 22,1,8 171,-1,8 78,1,8 20,-1,4 79,-1,1 129,1,1 23,-1,4 138,-1,2 2,1,2 29,1,4 143,1,2 42,-1,2 22,-1,1 72,-1,1 210,1,4 63,1,8 111,1,1 154,-1,1 87,1,2 46,1,1 118,-1,2 14,-1,4 144,-1,8 16,-1,1 49,-1,4 75,-1,8 21,1,4 150,1,1 162,1,8 99,1,1 73,-1,2 131,-1,8 138,1,2 50,1,8 65,1,8 36,-1,1 121,1,4 77,1,4 21,1,1 98,-1,1 135,1,2 212,1,1 34,1,8 128,-1,4 50,1,1 79,1,4 8,1,2 138,-1,1 90,-1,2 141,1,4 121,1,2 m| 103,1,2 55,1,1 25,1,2 103,-1,1 79,1,2 77,1,1 25,-1,1 133,1,2 48,1,1 130,-1,2 133,1,1 133,1,1 187,1,4 131,-1,1 187,-1,4 187,1,1 133,1,4 133,1,4 209,1,1 209,1,1 76,1,2 190,1,1 76,-1,2 132,-1,1 21,-1,2 149,1,1 214,1,2 132,-1,2 52,1,2 213,1,1 52,-1,2 213,-1,1 132,1,2 158,-1,1 128,1,2 159,1,1 128,-1,2 52,-1,4 72,1,1 102,-1,1 52,1,4 103,1,1 52,-1,4 79,-1,1 52,1,4 79,1,4 185,-1,1 79,-1,4 209,-1,1 131,1,4 209,-1,1 131,-1,4 209,-1,1 75,1,4 212,1,1 75,-1,4 133,-1,1 187,-1,4 72,1,1 187,1,4 185,1,1 130,-1,2 209,1,1 130,1,2 106,1,1 178,1,4 133,1,1 178,1,4 130,1,1 210,-1,4 183,1,1 210,1,4 183,-1,1 130,1,2 178,1,1 130,-1,2 209,-1,1 159,1,2 105,1,1 159,-1,2 207,1,1 212,-1,1 78,1,2 132,1,1 78,-1,2 128,1,1 73,1,2 100,1,1 73,1,2 194,-1,1 159,-1,2 128,-1,1 159,1,2 214,-1,1 159,-1,2 131,1,1 159,1,2 128,-1,1 75,-1,2 124,1,1 75,1,2 71,1,1 158,-1,1 209,1,4 209,1,4 184,-1,1 209,-1,1 184,1,1 209,1,2 209,1,2 187,1,1 79,-1,1 209,-1,4 76,-1,1 210,1,1 76,1,1 209,1,4 76,-1,1 129,-1,1 129,-1,1 75,-1,1 211,-1,2 183,1,1 210,-1,1 183,-1,1 211,1,2 76,-1,1 211,-1,1 78,1,1 211,1,1 186,1,1 157,-1,1 74,1,1 182,-1,1 182,-1,1 133,1,2 182,1,1 203,1,1 182,-1,1 203,1,1 101,1,2 101,1,2 51,1,1 104,1,1 51,-1,1 101,-1,2 211,-1,1 159,1,1 186,-1,1 213,1,1 104,-1,1 213,-1,1 211,1,1 41,1,1 79,-1,1 155,1,1 155,1,1 m[ 133,1,2 74,1,1 206,1,1 74,-1,1 206,1,1 101,1,2 101,1,2 159,1,1 105,1,1 159,-1,1 101,-1,2 m] 187,-1,1 157,1,1 164,-1,1 183,1,1 131,-1,2 183,-1,1 157,1,1 183,1,1 157,-1,1 103,-1,2 103,-1,2 187,1,1 106,-1,1 187,-1,1 103,1,2 103,-1,1 52,1,1 133,1,1 50,1,1 185,1,1 77,-1,1 23,1,1 75,1,1 20,1,1 74,-1,1 51,-1,1 186,1,1 186,1,1 24,1,1 m[ 130,1,2 24,1,1 68,1,1 24,-1,1 68,1,1 104,1,2 104,1,2 214,1,1 105,1,1 214,-1,1 104,-1,2 m] 184,1,1 76,1,1 44,1,1 79,-1,1 132,-1,1 213,-1,1 182,1,1 m[ 48,1,2 104,1,1 65,1,1 104,-1,1 65,1,1 186,1,2 186,1,2 128,1,1 182,1,1 128,-1,1 186,-1,2 m] 78,1,1 25,-1,1 49,1,1 211,-1,1 132,1,1 104,1,1 m[ 183,1,2 131,1,1 62,1,1 131,-1,1 62,1,1 51,1,2 51,1,2 101,1,1 47,1,1 101,-1,1 51,-1,2 m] 131,-1,1 24,1,1 185,1,1 204,1,1 183,-1,1 99,1,1 163,-1,1 130,1,1 104,-1,1 20,1,1 129,-1,1 160,-1,1 m[ 78,1,2 129,1,1 181,1,1 129,-1,1 181,1,1 156,1,2 156,1,2 106,1,1 160,1,1 106,-1,1 156,-1,2 m] 23,-1,1 23,-1,1 183,-1,1 133,-1,1 75,-1,4 211,1,1 75,-1,1 211,-1,1 75,1,4 129,-1,1 210,-1,1 20,1,1 102,-1,1 102,-1,1 77,-1,1 m[ 159,1,2 209,1,1 175,1,1 209,-1,1 175,1,1 75,1,2 75,1,2 23,1,1 77,1,1 23,-1,1 75,-1,2 m] 103,1,1 187,1,1 126,1,1 131,-1,1 186,1,1 131,1,1 104,-1,1 186,-1,1 104,1,1 186,-1,1 104,1,1 186,1,1 104,-1,1 209,-1,1 74,-1,1 m[ 159,1,2 129,1,1 170,1,1 129,-1,1 170,1,1 75,1,2 75,1,2 101,1,1 74,1,1 101,-1,1 75,-1,2 m] 20,1,1 75,1,1 100,1,1 75,1,1 75,1,1 20,-1,1 51,-1,1 184,1,1 211,1,1 155,-1,1 182,1,1 156,-1,2 128,1,1 156,-1,1 128,-1,1 156,1,2 172,1,1 158,1,1 182,1,1 156,1,2 156,1,2 128,1,1 156,-1,1 128,-1,1 156,1,2 156,1,2 24,1,2 184,-1,1 213,-1,1 184,1,1 24,-1,2 101,1,1 186,1,1 101,-1,1 213,1,1 186,-1,1 213,-1,1 156,1,4 133,-1,1 156,-1,1 133,1,1 156,-1,4 133,-1,1 156,1,1 133,1,1 129,-1,1 156,1,2 129,1,1 186,-1,1 129,-1,1 156,1,2 212,1,1 156,-1,1 212,-1,1 156,1,2 156,1,2 75,1,1 212,1,1 102,-1,1 75,1,1 102,1,1 129,-1,1 156,1,1 129,1,1 182,1,1 155,-1,1 182,-1,1 155,1,1 104,-1,1 186,1,1 104,1,1 102,1,1 129,1,1 129,1,1 156,1,4 209,1,1 177,1,1 209,-1,1 177,1,1 156,1,2 156,1,2 212,-1,1 78,1,1 212,1,1 156,-1,2 209,1,1 156,1,1 129,-1,1 156,1,1 129,1,1 131,-1,1 186,-1,1 131,1,1 186,-1,1 131,1,1 186,1,1 131,-1,1 102,1,1 209,1,1 76,1,1 m[ 159,1,2 20,1,1 174,1,1 20,-1,1 174,1,1 75,1,2 75,1,2 211,1,1 76,1,1 211,-1,1 75,-1,2 m] 129,1,1 159,-1,1 129,-1,1 20,-1,1 75,1,1 20,1,1 77,-1,1 210,-1,1 183,-1,1 210,1,1 212,1,1 183,-1,1 212,-1,1 129,1,1 159,-1,2 23,1,1 75,-1,1 23,-1,1 159,1,2 178,1,1 106,1,1 160,1,1 168,-1,1 106,-1,1 187,1,1 209,1,1 75,-1,2 129,1,1 183,1,1 129,-1,1 75,-1,2 212,-1,1 75,1,1 212,1,1 75,1,2 75,1,2 20,-1,1 76,1,1 20,1,1 79,1,1 160,-1,1 187,-1,1 106,-1,1 77,-1,1 185,1,1 23,-1,1 211,1,1 184,-1,1 76,1,1 184,1,1 102,1,1 102,1,1 209,1,1 209,1,1 155,-1,1 m[ 78,1,2 102,1,1 173,1,1 102,-1,1 173,1,1 156,1,2 156,1,2 128,1,1 155,1,1 128,-1,1 156,-1,2 m] 157,1,1 211,1,1 157,-1,1 187,-1,1 133,1,1 187,1,1 133,-1,1 160,-1,1 187,1,1 160,1,1 209,1,2 102,1,1 187,1,1 102,-1,1 209,1,2 130,-1,1 209,1,1 130,1,1 209,1,2 209,1,2 129,1,1 131,1,1 187,1,1 131,-1,1 24,1,1 131,1,1 105,-1,1 209,1,2 156,-1,1 187,1,1 156,1,1 209,1,2 77,1,1 209,-1,1 77,-1,1 209,1,2 209,1,2 158,-1,1 47,1,1 158,1,1 12,1,1 209,-1,2 156,-1,1 187,1,1 156,1,1 209,-1,2 209,-1,2 209,-1,2 129,1,1 129,1,1 209,1,2 209,1,2 129,1,1 187,1,1 129,-1,1 209,-1,2 209,1,1 157,1,1 209,-1,1 157,-1,1 209,-1,2 184,1,1 103,1,1 210,-1,1 103,-1,1 21,1,1 75,1,1 129,-1,1 25,1,2 25,1,2 129,1,1 187,-1,1 129,-1,1 25,-1,2 25,1,1 183,1,1 22,1,1 183,-1,1 25,-1,2 204,1,1 209,1,2 209,1,2 102,1,1 187,1,1 102,-1,1 209,1,2 209,1,2 211,-1,1 184,-1,1 211,1,1 184,1,1 131,1,1 209,-1,2 157,1,1 209,1,1 157,-1,1 209,1,2 184,-1,1 213,-1,1 129,-1,1 156,1,2 212,1,1 156,-1,1 212,-1,1 156,-1,2 25,1,1 25,1,1 212,1,1 156,-1,2 156,1,1 23,-1,1 156,1,1 23,1,1 156,1,2 135,-1,1 102,-1,1 156,-1,2 156,1,1 22,1,1 156,-1,1 22,-1,1 156,1,2 132,1,1 23,-1,1 156,-1,1 23,1,1 186,-1,1 155,-1,2 20,-1,1 138,-1,1 20,1,1 155,1,2 128,1,1 m[ 128,1,2 155,1,1 128,-1,2 23,-1,1 50,-1,1 23,1,1 136,-1,1 128,1,2 155,-1,1 128,-1,2 m] 155,1,4 20,1,1 20,1,1 155,-1,4 20,1,1 20,1,1 m[ 128,1,2 155,1,1 128,-1,2 136,1,1 23,-1,1 50,1,1 23,1,1 128,1,2 155,-1,1 128,-1,2 m] 74,1,1 137,1,1 m[ 101,1,4 24,-1,1 102,-1,1 24,1,1 102,-1,1 24,-1,1 102,1,1 102,1,1 24,1,1 101,-1,4 m] 75,1,1 183,-1,1 21,1,1 m[ 103,1,4 74,-1,1 102,-1,1 74,1,1 102,-1,1 74,-1,1 102,1,1 102,1,1 74,1,1 103,-1,4 m] 79,1,1 184,-1,1 54,1,1 76,1,1 187,1,4 210,1,1 50,-1,1 210,-1,1 50,-1,1 210,1,1 50,1,1 50,1,1 210,-1,1 187,-1,4 21,-1,1 111,1,1 m[ 21,1,4 77,1,1 214,-1,1 77,-1,1 214,-1,1 77,1,1 214,1,1 214,1,1 77,-1,1 21,-1,4 m] 103,1,8 35,1,1 36,1,1 m[ 155,1,4 25,1,1 76,-1,1 25,-1,1 76,-1,1 25,1,1 76,1,1 76,1,1 25,-1,1 155,-1,4 m] 156,1,1 m[ 106,1,2 210,-1,1 102,-1,1 210,1,1 102,-1,1 210,-1,1 102,1,1 102,1,1 210,1,1 106,-1,2 m] 185,1,1 199,1,1 185,-1,1 76,-1,1 m[ 79,1,2 209,-1,1 76,-1,1 209,1,1 76,-1,1 209,-1,1 76,1,1 76,1,1 209,1,1 79,-1,2 m] 48,1,1 210,1,1 201,1,1 185,1,1 m[ 183,1,2 79,-1,1 185,-1,1 79,1,1 185,-1,1 79,-1,1 185,1,1 185,1,1 79,1,1 183,-1,2 m] 214,1,1 78,-1,1 101,-1,1 78,1,1 101,1,1 213,-1,1 m[ 214,1,2 185,-1,1 213,-1,1 185,1,1 213,-1,1 185,-1,1 213,1,1 213,1,1 185,1,1 214,-1,2 m] 52,1,1 52,1,1 133,-1,1 90,1,1 m[ 183,1,2 76,-1,1 187,-1,1 76,1,1 187,-1,1 76,-1,1 187,1,1 187,1,1 76,1,1 183,-1,2 m] 78,1,1 79,-1,1 146,1,1 m[ 105,1,2 183,-1,1 106,-1,1 183,1,1 106,-1,1 183,-1,1 106,1,1 106,1,1 183,1,1 105,-1,2 m] 103,1,1 184,1,1 21,1,1 184,-1,1 79,1,1 184,-1,1 79,1,1 183,-1,1 12,1,1 182,-1,1 38,1,1 155,1,1 50,-1,1 155,-1,1 47,-1,1 155,-1,1 49,-1,1 155,1,1 21,-1,1 49,-1,1 21,1,1 210,-1,1 32,1,1 210,1,1 133,-1,1 43,1,1 133,1,1 160,1,1 33,1,1 160,-1,1 51,-1,1 24,-1,1 50,-1,1 24,1,1 131,-1,1 52,1,1 131,1,1 49,1,1 76,-1,1 47,1,1 76,1,1 50,1,1 160,-1,1 50,-1,1 160,1,1 77,-1,1 43,1,1 77,1,1 106,1,1 48,-1,1 106,-1,1 47,-1,1 155,1,1 50,1,1 155,-1,1 28,-1,1 158,-1,1 47,1,1 158,1,1 76,-1,1 47,1,1 76,1,1 49,-1,1 211,1,1 51,1,1 211,-1,1 24,-1,1 51,1,1 24,1,1 159,1,1 23,-1,1 48,1,1 23,1,1 156,1,1 45,1,1 23,-1,1 48,1,1 48,1,1 23,1,1 25,-1,1 48,1,1 25,-1,1 50,-1,1 25,1,1 25,1,1 130,-1,1 34,-1,1 130,1,1 49,-1,1 157,-1,1 52,1,1 157,1,1 106,-1,1 49,1,1 49,1,1 106,1,1 41,1,1 106,-1,1 51,1,1 106,1,1 43,1,1 74,-1,1 50,-1,1 74,1,1 51,1,1 212,-1,1 51,1,1 212,1,1 52,-1,1 133,1,1 51,1,1 133,-1,1 52,1,1 133,1,1 51,-1,1 133,-1,1 128,-1,1 51,-1,1 128,1,1 51,-1,1 128,-1,1 51,1,1 51,1,1 128,1,1 106,-1,1 46,1,1 106,1,1 52,-1,1 79,1,1 50,1,1 79,-1,1 106,-1,1 51,1,1 106,1,1 m[ 106,-1,1 51,-1,1 106,1,1 51,-1,1 106,-1,1 51,1,1 51,1,1 106,1,1 m] 52,-1,1 m[ 212,-1,1 51,-1,1 212,1,1 51,-1,1 212,-1,1 51,1,1 51,1,1 212,1,1 m] m[ 106,1,2 106,1,2 183,-1,1 127,1,1 183,1,1 210,-1,1 183,-1,1 210,1,1 183,1,1 106,1,2 106,1,2 52,1,1 52,1,1 106,-1,2 106,-1,2 183,-1,1 210,-1,1 183,1,1 210,1,1 183,-1,1 127,1,1 183,1,1 106,1,2 106,1,2 m] 52,1,1 131,-1,1 20,-1,1 41,1,1 20,1,1 131,1,1 41,1,1 131,-1,1 52,1,1 131,1,1 160,1,1 106,1,1 52,-1,1 106,-1,1 52,-1,1 52,-1,1 106,1,1 52,1,1 106,-1,1 160,-1,1 52,1,1 m[ 101,-1,1 48,-1,1 101,1,1 48,-1,1 101,-1,1 48,1,1 48,1,1 101,1,1 m] m[ 52,1,2 211,-1,1 48,-1,1 211,1,1 48,-1,1 211,-1,1 48,1,1 48,1,1 211,1,1 52,-1,2 m] 47,1,1 m[ 155,-1,1 49,-1,1 155,1,1 49,-1,1 155,-1,1 49,1,1 49,1,1 155,1,1 m] m[ 213,-1,1 49,-1,1 213,1,1 49,-1,1 213,-1,1 49,1,1 49,1,1 213,1,1 m] 35,1,1 m[ 79,-1,1 49,-1,1 79,1,1 49,-1,1 79,-1,1 49,1,1 49,1,1 79,1,1 m] 27,1,1 49,-1,1 m[ 48,1,2 79,-1,1 49,-1,1 79,1,1 49,-1,1 79,-1,1 49,1,1 49,1,1 79,1,1 48,-1,2 m] 46,1,1 m[ 210,-1,1 50,-1,1 210,1,1 50,-1,1 210,-1,1 50,1,1 50,1,1 210,1,1 m] 34,1,1 m[ 131,-1,1 52,-1,1 131,1,1 52,-1,1 131,-1,1 52,1,1 52,1,1 131,1,1 m] m[ 50,1,2 128,-1,1 51,-1,1 128,1,1 51,-1,1 128,-1,1 51,1,1 51,1,1 128,1,1 50,-1,2 m] 33,-1,1 m[ 213,-1,1 49,-1,1 213,1,1 49,-1,1 213,-1,1 49,1,1 49,1,1 213,1,1 m] 157,-1,1 52,-1,1 157,1,1 52,-1,1 157,-1,1 52,1,1 52,1,1 157,1,1 49,1,1 m[ 103,-1,1 52,-1,1 103,1,1 52,-1,1 103,-1,1 52,1,1 52,1,1 103,1,1 m] 51,1,4 157,-1,1 52,-1,1 157,1,1 52,-1,1 157,-1,1 52,1,1 52,1,1 157,1,1 51,-1,4 28,-1,1 m[ 74,-1,1 50,-1,1 74,1,1 50,-1,1 74,-1,1 50,1,1 50,1,1 74,1,1 m] m[ 157,-1,1 52,-1,1 157,1,1 52,-1,1 157,-1,1 52,1,1 52,1,1 157,1,1 m] 49,1,1 m[ 103,-1,1 52,-1,1 103,1,1 52,-1,1 103,-1,1 52,1,1 52,1,1 103,1,1 m] 52,-1,1 m[ 51,1,2 157,-1,1 52,-1,1 157,1,1 52,-1,1 157,-1,1 52,1,1 52,1,1 157,1,1 51,-1,2 m] 42,1,1 m[ 157,-1,1 52,-1,1 157,1,1 52,-1,1 157,-1,1 52,1,1 52,1,1 157,1,1 m] 75,1,1 102,1,1 78,1,4 78,1,4 133,-1,1 78,-1,1 133,1,1 78,-1,1 133,-1,1 78,1,1 78,1,1 133,1,1 78,-1,4 78,-1,4 133,-1,1 78,1,1 78,1,1 133,1,1 78,1,1 133,-1,1 78,1,1 133,1,1 102,-1,1 78,1,1 50,-1,1 m[ 131,-1,1 52,-1,1 131,1,1 52,-1,1 131,-1,1 52,1,1 52,1,1 131,1,1 m] 36,1,1 m[ 106,-1,1 51,-1,1 106,1,1 51,-1,1 106,-1,1 51,1,1 51,1,1 106,1,1 m] m[ 49,1,2 103,-1,1 52,-1,1 103,1,1 52,-1,1 103,-1,1 52,1,1 52,1,1 103,1,1 49,-1,2 m] m[ 49,1,4 103,-1,1 52,-1,1 103,1,1 52,-1,1 103,-1,1 52,1,1 52,1,1 103,1,1 49,-1,4 m] 49,-1,1 m[ 106,-1,1 51,-1,1 106,1,1 51,-1,1 106,-1,1 51,1,1 51,1,1 106,1,1 m] 52,1,1 m[ 49,1,2 103,-1,1 52,-1,1 103,1,1 52,-1,1 103,-1,1 52,1,1 52,1,1 103,1,1 49,-1,2 m] 106,1,1 48,1,1 106,-1,1 48,1,1 106,1,1 48,-1,1 48,-1,1 106,-1,1 m[ 49,1,4 103,-1,1 52,-1,1 103,1,1 52,-1,1 103,-1,1 52,1,1 52,1,1 103,1,1 49,-1,4 m] 52,1,1 52,1,1 m[ 106,-1,1 51,-1,1 106,1,1 51,-1,1 106,-1,1 51,1,1 51,1,1 106,1,1 m] 52,1,1 m[ 49,1,4 103,-1,1 52,-1,1 103,1,1 52,-1,1 103,-1,1 52,1,1 52,1,1 103,1,1 49,-1,4 m] 50,-1,1 m[ 24,-1,1 50,-1,1 24,1,1 50,-1,1 24,-1,1 50,1,1 50,1,1 24,1,1 m] m[ 49,1,2 103,-1,1 52,-1,1 103,1,1 52,-1,1 103,-1,1 52,1,1 52,1,1 103,1,1 49,-1,2 m] 43,1,1 m[ 23,-1,1 48,-1,1 23,1,1 48,-1,1 23,-1,1 48,1,1 48,1,1 23,1,1 m] 49,1,1 m[ 49,1,2 103,-1,1 52,-1,1 103,1,1 52,-1,1 103,-1,1 52,1,1 52,1,1 103,1,1 49,-1,2 m] 37,1,1 m[ 23,-1,1 48,-1,1 23,1,1 48,-1,1 23,-1,1 48,1,1 48,1,1 23,1,1 m] 52,1,1 m[ 49,1,4 103,-1,1 52,-1,1 103,1,1 52,-1,1 103,-1,1 52,1,1 52,1,1 103,1,1 49,-1,4 m] 30,1,1 m[ 23,-1,1 48,-1,1 23,1,1 48,-1,1 23,-1,1 48,1,1 48,1,1 23,1,1 m] m[ 211,-1,1 48,-1,1 211,1,1 48,-1,1 211,-1,1 48,1,1 48,1,1 211,1,1 m] m[ 155,-1,1 49,-1,1 155,1,1 49,-1,1 155,-1,1 49,1,1 49,1,1 155,1,1 m] 48,-1,1 48,-1,1 m[ 211,-1,1 48,-1,1 211,1,1 48,-1,1 211,-1,1 48,1,1 48,1,1 211,1,1 m] 31,1,1 m[ 49,1,2 103,-1,1 52,-1,1 103,1,1 52,-1,1 103,-1,1 52,1,1 52,1,1 103,1,1 49,-1,2 m] 44,1,1 m[ 106,-1,1 51,-1,1 106,1,1 51,-1,1 106,-1,1 51,1,1 51,1,1 106,1,1 m] 31,-1,6 44,1,1 m[ 79,-1,1 49,-1,1 79,1,1 49,-1,1 79,-1,1 49,1,1 49,1,1 79,1,1 m] 34,-1,1 43,1,6 50,-1,6 m[ 74,-1,1 50,-1,1 74,1,1 50,-1,1 74,-1,1 50,1,1 50,1,1 74,1,1 m] 30,-1,1 50,1,6 m[ 158,-1,1 47,-1,1 158,1,1 47,-1,1 158,-1,1 47,1,1 47,1,1 158,1,1 m] 28,1,1 50,1,6 m[ 23,-1,1 48,-1,1 23,1,1 48,-1,1 23,-1,1 48,1,1 48,1,1 23,1,1 m] 48,-1,7 m[ 133,-1,1 48,-1,1 133,1,1 48,-1,1 133,-1,1 48,1,1 48,1,1 133,1,1 m] 30,1,1 m[ 157,-1,1 52,-1,1 157,1,1 52,-1,1 157,-1,1 52,1,1 52,1,1 157,1,1 m] 52,1,7 52,1,7 m[ 77,-1,1 52,-1,1 77,1,1 52,-1,1 77,-1,1 52,1,1 52,1,1 77,1,1 m] 42,1,1 41,1,6 m[ 155,-1,1 49,-1,1 155,1,1 49,-1,1 155,-1,1 49,1,1 49,1,1 155,1,1 m] 45,1,6 129,1,1 129,1,1 47,-1,1 129,1,1 129,1,1 47,1,1 m[ 76,-1,1 47,-1,1 76,1,1 47,-1,1 76,-1,1 47,1,1 47,1,1 76,1,1 m] 44,1,6 m[ 24,-1,1 131,-1,1 213,1,1 131,1,1 24,1,1 131,-1,1 213,-1,1 131,1,1 m] m[ 23,-1,1 77,-1,1 212,1,1 77,1,1 23,1,1 77,-1,1 212,-1,1 77,1,1 m] 25,1,1 156,-1,1 25,1,1 25,1,1 m[ 77,-1,1 212,-1,1 158,1,1 212,1,1 77,1,1 212,-1,1 158,-1,1 212,1,1 m] m[ 25,-1,1 25,-1,1 156,1,1 25,-1,1 m] 209,1,1 78,1,1 78,1,1 209,1,1 78,-1,1 209,1,1 m[ 76,-1,1 22,1,1 76,1,1 211,-1,1 76,-1,1 22,-1,1 76,1,1 211,1,1 m] m[ 209,-1,1 78,1,1 209,-1,1 78,-1,1 78,-1,1 209,-1,1 m] 47,1,1 78,-1,2 49,1,1 156,1,1 156,1,1 49,-1,1 78,1,2 78,1,2 47,-1,1 156,1,1 156,1,1 47,1,1 78,-1,2 78,-1,2 47,1,1 156,1,1 156,1,1 47,-1,1 78,1,2 78,1,2 50,-1,1 156,1,1 156,1,1 50,1,1 78,-1,2 105,-1,1 75,1,1 105,1,1 52,-1,1 52,-1,1 105,-1,1 75,-1,1 105,1,1 214,-1,1 75,1,1 75,1,1 52,-1,1 75,1,1 75,1,1 214,1,1 52,-1,1 214,1,1 159,-1,1 129,-1,1 159,1,1 50,1,1 159,-1,1 52,1,1 132,-1,1 52,-1,1 159,1,1 50,-1,1 78,-1,1 50,-1,1 78,1,1 20,-1,1 50,-1,1 20,1,1 25,-1,1 159,-1,1 38,1,1 159,1,1 25,1,1 35,1,1 214,-1,1 214,-1,1 49,-1,1 214,1,1 156,-1,1 49,-1,1 156,1,1 25,-1,1 25,-1,1 49,1,1 25,-1,1 49,-1,1 25,-1,1 75,-1,1 49,-1,1 75,1,1 49,-1,1 214,-1,1 105,-1,1 214,-1,1 105,1,1 31,-1,1 105,-1,1 214,1,1 105,1,1 214,-1,1 31,1,1 214,1,1 159,1,1 46,1,1 159,-1,1 214,-1,1 159,1,1 214,1,1 159,1,1 46,-1,1 159,-1,1 214,-1,1 49,-1,1 159,-1,1 49,1,1 214,1,1 214,1,1 159,-1,1 214,-1,1 132,-1,1 45,1,1 132,1,1 214,1,1 45,1,1 159,1,1 105,-1,1 48,-1,1 105,1,1 105,1,1 48,1,1 105,1,1 48,-1,1 105,1,1 48,1,1 105,-1,1 48,-1,1 105,1,1 48,1,1 105,1,1 105,1,1 52,1,1 105,-1,1 52,-1,1 105,1,1 52,-1,1 105,1,1 105,1,1 52,1,1 105,-1,1 52,1,1 105,1,1 52,-1,1 105,1,1 52,-1,1 105,1,1 105,1,1 52,1,1 105,1,1 105,1,1 m[ 78,1,6 50,1,1 78,-1,1 50,-1,1 78,-1,6 50,1,1 78,1,1 50,-1,1 78,1,6 50,1,1 78,-1,1 78,-1,1 50,-1,1 78,-1,6 50,-1,1 78,-1,1 50,1,1 78,1,6 50,1,1 78,-1,1 78,-1,1 50,-1,1 78,-1,6 50,1,1 78,-1,1 50,-1,1 78,1,6 50,1,1 78,1,1 50,-1,1 78,-1,6 50,-1,1 78,1,1 50,1,1 m] m[ 102,-1,2 78,1,2 20,1,1 102,1,2 20,-1,1 20,-1,1 78,-1,2 m] m[ 78,1,6 50,1,1 78,-1,1 50,-1,1 78,-1,6 50,1,1 78,1,1 50,-1,1 78,1,6 50,1,1 78,-1,1 78,-1,1 50,-1,1 78,-1,6 50,-1,1 78,-1,1 50,1,1 78,1,6 50,1,1 78,-1,1 78,-1,1 50,-1,1 78,-1,6 50,1,1 78,-1,1 50,-1,1 78,1,6 50,1,1 78,1,1 50,-1,1 78,-1,6 50,-1,1 78,1,1 50,1,1 m] m[ 78,1,2 20,1,1 20,1,1 102,-1,2 20,-1,1 78,-1,2 102,1,2 m].
{6}x{4} hexagonal duoprism
- {6}x{4} hexagonal duoprism (1041 twists)
MagicCube4D 3 0 1041 {6}x{4} 3 -0.8544862888844661 -0.22154812053218217 0.4698612693094747 -1.328600896688459E-16 -0.5194721018081458 0.3668358431016746 -0.7717384269679143 -1.2827054145327176E-15 -0.0013847568307600096 -0.9035197255757846 -0.4285442660262513 -2.9258375444651574E-9 -4.052353382194848E-12 -2.6435514941470678E-9 -1.253851830492119E-9 1.0 * 223,-1,2 197,-1,4 310,-1,2 129,1,1 159,-1,1 292,1,1 195,-1,2 17,-1,2 213,1,1 197,1,4 73,-1,1 19,1,1 312,1,4 47,1,4 79,1,2 24,-1,1 51,-1,2 199,1,1 213,-1,4 77,1,2 238,1,4 178,-1,1 314,1,2 44,1,1 253,-1,4 291,1,4 130,-1,4 213,1,1 184,-1,1 234,1,1 79,-1,2 238,1,2 196,-1,4 98,-1,2 236,1,4 274,1,1 79,-1,2 238,-1,1 98,1,4 155,1,2 214,1,4 151,-1,2 199,1,1 25,-1,2 51,-1,1 99,1,1 295,-1,1 75,1,1 97,1,1 275,-1,4 312,1,2 253,1,2 45,-1,2 198,-1,4 23,1,4 213,1,1 253,1,4 314,-1,2 73,1,2 174,-1,1 128,-1,4 74,-1,4 275,-1,4 m| 291,1,1 192,1,1 213,1,1 291,1,1 129,-1,1 315,1,1 315,1,1 175,1,1 74,1,1 155,1,1 199,-1,1 129,-1,1 174,1,1 47,1,1 238,1,1 238,1,1 101,1,1 101,1,1 23,1,1 160,1,1 199,1,1 199,1,1 199,1,1 101,-1,1 75,-1,1 195,1,1 75,1,1 195,1,1 101,1,1 199,1,1 m[ 128,-1,1 102,-1,1 196,1,1 102,1,1 196,1,1 128,1,1 m] 199,-1,1 199,-1,1 175,1,1 m[ 47,-1,1 21,-1,1 193,1,1 21,1,1 193,1,1 47,1,1 m] 199,1,1 199,1,1 m[ 74,-1,1 48,-1,1 194,1,1 48,1,1 194,1,1 74,1,1 m] 194,1,1 m[ 101,-1,1 75,-1,1 195,1,1 75,1,1 195,1,1 101,1,1 m] 195,1,1 m[ 128,-1,1 102,-1,1 196,1,1 102,1,1 196,1,1 128,1,1 m] 174,1,1 m[ 156,-1,1 129,-1,1 197,1,1 129,1,1 197,1,1 156,1,1 m] 262,1,1 275,1,1 155,-1,1 20,-1,1 265,1,1 20,1,1 265,1,1 155,1,1 226,1,1 m[ 129,-1,1 237,1,1 129,1,1 m] 47,1,1 237,-1,1 47,-1,1 20,-1,1 238,1,1 20,1,1 156,-1,1 238,1,1 156,1,1 101,-1,1 238,1,1 101,1,1 238,1,1 74,-1,1 238,1,1 74,1,1 309,1,1 155,1,1 238,-1,1 155,-1,1 309,1,1 129,1,1 238,-1,1 129,-1,1 m[ 128,-1,1 277,1,1 128,1,1 m] 238,1,1 238,1,1 m[ 47,-1,1 238,1,1 47,1,1 m] 237,-1,1 m[ 75,-1,1 237,1,1 75,1,1 m] 237,-1,1 m[ 48,-1,1 237,1,1 48,1,1 m] m[ 155,-1,1 237,1,1 155,1,1 m] 237,-1,1 20,1,1 237,-1,1 20,-1,1 237,-1,1 155,-1,1 237,1,1 155,1,1 237,-1,1 155,-1,1 237,1,1 155,1,1 m[ 102,-1,1 237,1,1 102,1,1 m] 233,1,1 102,-1,1 237,-1,1 102,1,1 237,-1,1 m[ 102,-1,1 237,1,1 102,1,1 m] 214,1,1 20,-1,1 238,-1,1 20,1,1 238,-1,1 20,-1,1 238,1,1 238,1,1 20,1,1 238,1,1 47,-1,1 238,-1,1 47,1,1 238,-1,1 47,-1,1 238,1,1 238,1,1 47,1,1 217,1,1 237,-1,1 237,-1,1 m[ 129,-1,1 237,-1,1 129,1,1 237,-1,1 129,-1,1 237,1,1 237,1,1 129,1,1 m] 238,1,1 238,1,1 238,1,1 m[ 128,-1,1 238,-1,1 128,1,1 238,-1,1 128,-1,1 238,1,1 238,1,1 128,1,1 m] 226,1,1 m[ 21,-1,1 237,-1,1 21,1,1 237,-1,1 21,-1,1 237,1,1 237,1,1 21,1,1 m] 237,-1,1 m[ 48,-1,1 237,-1,1 48,1,1 237,-1,1 48,-1,1 237,1,1 237,1,1 48,1,1 m] 214,1,1 238,1,1 238,1,1 238,1,1 m[ 101,-1,1 238,-1,1 101,1,1 238,-1,1 101,-1,1 238,1,1 238,1,1 101,1,1 m] 223,1,1 237,-1,1 237,-1,1 m[ 155,-1,1 237,-1,1 155,1,1 237,-1,1 155,-1,1 237,1,1 237,1,1 155,1,1 m] 237,-1,1 m[ 48,-1,1 237,-1,1 48,1,1 237,-1,1 48,-1,1 237,1,1 237,1,1 48,1,1 m] m[ 156,-1,1 238,-1,1 156,1,1 238,-1,1 156,-1,1 238,1,1 238,1,1 156,1,1 m] 214,1,1 237,-1,1 m[ 75,-1,1 237,-1,1 75,1,1 237,-1,1 75,-1,1 237,1,1 237,1,1 75,1,1 m] 217,1,1 238,-1,1 238,-1,1 m[ 156,-1,1 238,-1,1 156,1,1 238,-1,1 156,-1,1 238,1,1 238,1,1 156,1,1 m] m[ 74,-1,1 238,-1,1 74,1,1 238,-1,1 74,-1,1 238,1,1 238,1,1 74,1,1 m] m[ 102,-1,1 237,-1,1 102,1,1 237,-1,1 102,-1,1 237,1,1 237,1,1 102,1,1 m] 220,1,1 m[ 74,-1,1 238,-1,1 74,1,1 238,-1,1 74,-1,1 238,1,1 238,1,1 74,1,1 m] 237,1,1 237,1,1 133,1,1 238,1,2 238,1,2 133,1,1 238,-1,2 238,-1,2 51,1,1 213,1,1 51,-1,1 213,1,1 51,1,1 m[ 47,-1,1 231,1,1 47,1,1 231,1,1 199,-1,1 199,-1,1 236,1,1 199,1,1 199,1,1 47,-1,1 231,1,1 47,1,1 m] 238,-1,1 m[ 101,-1,1 233,1,1 101,1,1 233,1,1 199,-1,1 199,-1,1 232,1,1 199,1,1 199,1,1 101,-1,1 233,1,1 101,1,1 m] 237,-1,1 m[ 21,-1,1 232,1,1 21,1,1 232,1,1 276,-1,1 276,-1,1 233,1,1 276,1,1 276,1,1 21,-1,1 232,1,1 21,1,1 m] 237,-1,1 m[ 75,-1,1 234,1,1 75,1,1 234,1,1 276,-1,1 276,-1,1 235,1,1 276,1,1 276,1,1 75,-1,1 234,1,1 75,1,1 m] 237,-1,1 m[ 48,-1,1 233,1,1 48,1,1 233,1,1 276,-1,1 276,-1,1 234,1,1 276,1,1 276,1,1 48,-1,1 233,1,1 48,1,1 m] 233,1,1 m[ 102,-1,1 235,1,1 102,1,1 235,1,1 276,-1,1 276,-1,1 236,1,1 276,1,1 276,1,1 102,-1,1 235,1,1 102,1,1 m] m[ 129,-1,1 236,1,1 129,1,1 236,1,1 276,-1,1 276,-1,1 231,1,1 276,1,1 276,1,1 129,-1,1 236,1,1 129,1,1 m] 223,1,1 m[ 155,-1,1 231,1,1 155,1,1 231,1,1 276,-1,1 276,-1,1 232,1,1 276,1,1 276,1,1 155,-1,1 231,1,1 155,1,1 m] 232,1,1 m[ 20,-1,1 236,1,1 20,1,1 236,1,1 199,-1,1 199,-1,1 235,1,1 199,1,1 199,1,1 20,-1,1 236,1,1 20,1,1 m] 238,1,1 m[ 128,-1,1 234,1,1 128,1,1 234,1,1 199,-1,1 199,-1,1 233,1,1 199,1,1 199,1,1 128,-1,1 234,1,1 128,1,1 m] 237,-1,1 m[ 102,-1,1 237,-1,1 102,1,1 237,-1,1 102,-1,1 237,1,1 237,1,1 102,1,1 m] 223,1,1 316,-1,1 m[ 129,-1,1 237,-1,1 129,1,1 237,-1,1 129,-1,1 237,1,1 237,1,1 129,1,1 m] 237,-1,1 m[ 75,-1,1 237,-1,1 75,1,1 237,-1,1 75,-1,1 237,1,1 237,1,1 75,1,1 m] 231,1,1 316,1,1 316,1,1 m[ 21,-1,1 237,-1,1 21,1,1 237,-1,1 21,-1,1 237,1,1 237,1,1 21,1,1 m] 238,1,1 309,1,1 m[ 20,-1,1 238,-1,1 20,1,1 238,-1,1 20,-1,1 238,1,1 238,1,1 20,1,1 m] 226,1,1 315,-1,1 315,-1,1 m[ 128,-1,1 238,-1,1 128,1,1 238,-1,1 128,-1,1 238,1,1 238,1,1 128,1,1 m] 213,1,1 291,1,1 310,1,1 m[ 47,-1,1 238,-1,1 47,1,1 238,-1,1 47,-1,1 238,1,1 238,1,1 47,1,1 m] 315,1,1 315,1,1 m[ 101,-1,1 238,-1,1 101,1,1 238,-1,1 101,-1,1 238,1,1 238,1,1 101,1,1 m] 237,-1,1 237,-1,1 313,1,1 m[ 155,-1,1 237,-1,1 155,1,1 237,-1,1 155,-1,1 237,1,1 237,1,1 155,1,1 m] 233,1,1 316,-1,1 316,-1,1 m[ 48,-1,1 237,-1,1 48,1,1 237,-1,1 48,-1,1 237,1,1 237,1,1 48,1,1 m] 236,1,1 309,1,1 m[ 156,-1,1 238,-1,1 156,1,1 238,-1,1 156,-1,1 238,1,1 238,1,1 156,1,1 m] m[ 74,-1,1 238,-1,1 74,1,1 238,-1,1 74,-1,1 238,1,1 238,1,1 74,1,1 m] 199,-1,1 233,1,1 199,1,1 233,1,1 m[ 74,-1,1 238,-1,1 74,1,1 238,-1,1 74,-1,1 238,1,1 238,1,1 74,1,1 m] 312,1,1 238,-1,1 220,1,1 238,1,1 238,1,1 105,1,1 217,1,1 105,1,1 217,1,1 105,1,1 238,-1,1 105,1,1 217,1,1 105,1,1 217,1,1 105,1,1 238,1,1 159,1,1 214,1,1 159,1,1 238,-1,1 159,1,1 231,1,1 159,1,1 74,1,1 m[ 133,1,1 198,-1,1 198,-1,1 133,1,1 237,1,1 237,1,1 133,1,1 198,1,1 198,1,1 133,1,1 m] 237,-1,1 237,-1,1 75,1,1 79,1,1 238,1,1 79,1,1 158,1,1 199,1,1 238,-1,1 238,-1,1 158,1,1 238,-1,1 158,1,1 199,-1,1 158,1,1 52,1,1 238,1,1 52,1,1 277,1,1 52,1,1 238,-1,1 52,1,1 277,-1,1 23,1,1 277,-1,1 23,1,1 236,1,1 23,1,1 277,1,1 23,1,1 129,1,1 m[ 25,-1,1 277,-1,1 277,-1,1 25,-1,1 238,-1,1 238,-1,1 25,-1,1 277,1,1 277,1,1 25,-1,1 m] 238,1,1 238,1,1 129,-1,1 220,1,1 237,-1,1 198,1,1 198,1,1 106,1,1 237,-1,1 106,1,1 237,1,1 198,-1,1 198,-1,1 198,-1,1 160,1,1 237,1,1 237,1,1 160,1,1 237,-1,1 237,-1,1 198,1,1 25,-1,1 237,1,1 25,1,1 237,-1,1 198,1,1 198,1,1 160,-1,1 237,1,1 160,1,1 198,-1,1 198,-1,1 237,-1,1 25,-1,1 237,1,1 25,1,1 237,-1,1 52,-1,1 237,1,1 52,1,1 237,-1,1 198,1,1 25,-1,1 237,1,1 25,1,1 237,-1,1 198,-1,1 52,1,1 237,1,1 52,-1,1 237,-1,1 198,1,1 79,1,1 214,1,1 79,1,1 214,-1,1 198,-1,1 52,1,1 198,1,1 198,1,1 52,1,1 198,-1,1 79,1,1 214,1,1 79,-1,1 214,1,1 198,1,1 52,1,1 198,-1,1 198,-1,1 52,1,1 133,-1,1 m[ 155,-1,1 316,-1,1 155,1,1 316,-1,1 155,-1,1 316,1,1 316,1,1 155,1,1 m] 237,-1,1 237,-1,1 m[ 155,-1,1 316,-1,1 316,-1,1 155,1,1 316,1,1 155,-1,1 316,1,1 155,1,1 m] 237,-1,1 m[ 155,-1,1 316,-1,1 155,1,1 316,-1,1 155,-1,1 316,1,1 316,1,1 155,1,1 m] 237,1,1 237,1,1 m[ 155,-1,1 316,-1,1 316,-1,1 155,1,1 316,1,1 155,-1,1 316,1,1 155,1,1 m] 235,1,1 m[ 155,-1,1 316,-1,1 155,1,1 316,-1,1 155,-1,1 316,1,1 316,1,1 155,1,1 m] 220,1,1 235,1,1 m[ 155,-1,1 316,-1,1 316,-1,1 155,1,1 316,1,1 155,-1,1 316,1,1 155,1,1 m] 237,-1,1 237,-1,1 m[ 155,-1,1 316,-1,1 155,1,1 316,-1,1 155,-1,1 316,1,1 316,1,1 155,1,1 m] 237,1,1 m[ 155,-1,1 316,-1,1 316,-1,1 155,1,1 316,1,1 155,-1,1 316,1,1 155,1,1 m] 220,1,1 235,1,1 m[ 155,-1,1 316,-1,1 155,1,1 316,-1,1 155,-1,1 316,1,1 316,1,1 155,1,1 m] 234,1,1 m[ 155,-1,1 316,-1,1 316,-1,1 155,1,1 316,1,1 155,-1,1 316,1,1 155,1,1 m] 237,-1,1 m[ 155,-1,1 316,-1,1 155,1,1 316,-1,1 155,-1,1 316,1,1 316,1,1 155,1,1 m] 237,-1,1 m[ 155,-1,1 316,-1,1 316,-1,1 155,1,1 316,1,1 155,-1,1 316,1,1 155,1,1 m] 133,1,1 m[ 21,-1,1 316,-1,1 21,1,1 316,-1,1 21,-1,1 316,1,1 316,1,1 21,1,1 m] 237,-1,1 m[ 21,-1,1 316,-1,1 316,-1,1 21,1,1 316,1,1 21,-1,1 316,1,1 21,1,1 m] 236,1,1 m[ 21,-1,1 316,-1,1 21,1,1 316,-1,1 21,-1,1 316,1,1 316,1,1 21,1,1 m] 237,-1,1 m[ 21,-1,1 316,-1,1 316,-1,1 21,1,1 316,1,1 21,-1,1 316,1,1 21,1,1 m] 236,1,1 237,-1,1 237,-1,1 m[ 21,-1,1 316,-1,1 21,1,1 316,-1,1 21,-1,1 316,1,1 316,1,1 21,1,1 m] 237,1,1 237,1,1 m[ 21,-1,1 316,-1,1 316,-1,1 21,1,1 316,1,1 21,-1,1 316,1,1 21,1,1 m] m[ 21,-1,1 198,-1,1 21,1,1 198,-1,1 21,-1,1 198,1,1 198,1,1 21,1,1 m] 198,-1,2 m[ 21,-1,1 198,-1,1 198,-1,1 21,1,1 198,1,1 21,-1,1 198,1,1 21,1,1 m] 198,1,2 198,1,2 m[ 21,-1,1 198,-1,1 21,1,1 198,-1,1 21,-1,1 198,1,1 198,1,1 21,1,1 m] 198,-1,2 m[ 21,-1,1 198,-1,1 198,-1,1 21,1,1 198,1,1 21,-1,1 198,1,1 21,1,1 m] 104,1,1 m[ 21,-1,1 198,-1,1 21,1,1 198,-1,1 21,-1,1 198,1,1 198,1,1 21,1,1 m] 198,-1,2 198,-1,2 m[ 21,-1,1 198,-1,1 198,-1,1 21,1,1 198,1,1 21,-1,1 198,1,1 21,1,1 m] 198,-1,2 198,-1,2 m[ 21,-1,1 198,-1,1 21,1,1 198,-1,1 21,-1,1 198,1,1 198,1,1 21,1,1 m] 198,-1,2 198,-1,2 m[ 21,-1,1 198,-1,1 198,-1,1 21,1,1 198,1,1 21,-1,1 198,1,1 21,1,1 m] m[ 21,-1,1 198,-1,1 21,1,1 198,-1,1 21,-1,1 198,1,1 198,1,1 21,1,1 m] 198,1,2 198,1,2 198,1,2 m[ 21,-1,1 198,-1,1 198,-1,1 21,1,1 198,1,1 21,-1,1 198,1,1 21,1,1 m] 237,-1,1 m[ 21,-1,1 198,-1,1 21,1,1 198,-1,1 21,-1,1 198,1,1 198,1,1 21,1,1 m] 198,-1,2 198,-1,2 m[ 21,-1,1 198,-1,1 198,-1,1 21,1,1 198,1,1 21,-1,1 198,1,1 21,1,1 m] 198,-1,2 237,1,1 104,1,1 m[ 21,-1,1 198,-1,1 21,1,1 198,-1,1 21,-1,1 198,1,1 198,1,1 21,1,1 m] 198,1,2 198,1,2 m[ 21,-1,1 198,-1,1 198,-1,1 21,1,1 198,1,1 21,-1,1 198,1,1 21,1,1 m] 198,1,2 198,1,2 m[ 21,-1,1 198,-1,1 21,1,1 198,-1,1 21,-1,1 198,1,1 198,1,1 21,1,1 m] 198,1,2 198,1,2 m[ 21,-1,1 198,-1,1 198,-1,1 21,1,1 198,1,1 21,-1,1 198,1,1 21,1,1 m].
{3,3,3} simplex
- {3,3,3} simplex (3 twists)
MagicCube4D 3 0 3 {3,3,3} 2 -0.9818308009984434 0.027030570805249374 -0.0013178757805573245 -0.18781876811470283 -0.11578704873102247 -0.4610879794861981 -0.6915919304097842 0.5437755385373303 0.07699927098508157 0.6547096008662461 -0.6879938556891256 -0.30346483377046746 0.12912300269386898 -0.5983498658384061 -0.21991661949362995 -0.7595665663369965 * 0,1,1 47,1,1 33,1,1 3,1,2 63,-1,1 48,-1,1 31,1,2 62,-1,1 m| 30,1,1 45,-1,1 32,-1,1.
{5}x{5} 3
I started building a 2*2 block and add F2L pairs to it, leaving one "face" of each prism hyperface free. This step was simple and allowed me to get most of it done in under 260 moves. However, solving the rest proved very move-consuming (everything but last hyperface done in 473 moves, orientation of the last hyperface in 67 moves), and solving the last hyperface was extremely inefficient (315 moves). One reason of this inefficiency is that the "regrip" method (which is Raymond Zhao's RKT method) is inapplicable due to the lack of symmetry in the hyperface. I first solved a part of the bottom two layers in 136 moves, then I had to use long 4D commutators to place the edges (104 moves) and the corners (76 moves).
MagicCube4D 3 0 855 {5}x{5} 3
-0.9971855537773773 0.06814755973026763 -0.0312547119501923 1.5627355975134216E-4
-0.06309623203940026 -0.5376437859487554 0.8407974497013736 -0.00420398724850671
0.012513612145406324 0.2597020978746492 0.16224489159495925 -0.9518796273804374
0.03851293745236616 0.7992808579548274 0.5155185609732369 0.3064432688898038
122,1,2 274,-1,1 55,-1,1 130,1,1 325,-1,1 87,1,2 262,1,2 185,1,1 291,1,2 242,-1,1 179,-1,1 261,1,1 326,1,2 157,-1,1 31,1,1 208,1,2 30,-1,2 228,-1,1 317,1,1 226,1,2 130,1,1 307,1,1 57,1,1 314,1,2 21,-1,1 162,1,1 57,-1,2 242,-1,1 159,1,2 251,-1,1 289,1,1 193,-1,1 245,1,2 156,1,2 260,-1,1 175,1,1 92,-1,1 179,1,2 242,-1,2 28,1,1 152,1,1 284,1,1 175,-1,1 125,1,2 245,-1,1 58,1,1 218,1,2 94,1,2 54,-1,2 292,-1,1 95,1,1 278,-1,1 225,-1,1 326,-1,1 58,1,2 94,-1,2 275,-1,2 97,1,2 160,1,1 28,-1,1 248,1,2 96,1,2 289,-1,1 176,-1,2 m| 209,1,1 26,1,1 191,1,1 26,-1,1 58,-1,1 58,-1,1 161,1,1 229,1,1 295,1,1 295,1,1 262,-1,1 262,-1,1 157,1,1 157,1,1 327,1,1 327,1,1 26,1,1 26,1,1 284,1,1 157,-1,1 295,-1,1 129,1,1 25,1,1 295,1,1 25,-1,1 25,-1,1 295,1,1 295,1,1 25,1,1 295,1,1 95,1,1 158,1,1 258,1,1 158,-1,1 229,-1,1 295,1,1 295,1,1 128,1,1 262,-1,1 121,1,1 229,-1,1 61,1,1 229,1,1 94,1,1 229,1,1 127,1,1 229,-1,1 94,1,1 229,-1,1 61,1,1 229,-1,1 28,1,1 327,-1,1 26,1,1 262,1,1 26,-1,1 26,-1,1 262,1,1 26,1,1 26,1,1 229,-1,1 327,-1,1 157,1,1 229,-1,1 124,1,1 327,-1,1 327,-1,1 124,-1,1 327,1,1 226,1,1 196,1,1 196,1,1 119,1,1 196,-1,1 126,1,1 229,-1,1 196,-1,1 92,-1,1 295,-1,1 92,1,1 92,1,1 215,1,1 259,1,1 292,1,1 259,1,1 215,1,1 182,1,1 314,1,1 182,1,1 215,1,1 295,1,1 92,1,1 92,1,1 324,1,1 92,-1,1 92,-1,1 262,1,1 262,1,1 124,-1,1 262,-1,1 262,-1,1 295,-1,1 325,-1,1 295,1,1 317,1,1 327,1,1 124,-1,1 327,-1,1 124,1,1 124,1,1 262,-1,1 121,1,1 295,1,1 295,1,1 124,-1,1 129,1,1 124,-1,1 262,-1,1 124,-1,1 295,1,1 124,-1,1 262,-1,1 124,-1,1 262,1,1 124,1,1 295,1,1 124,-1,1 124,-1,1 295,-1,1 124,1,1 124,1,1 262,1,1 124,-1,1 262,-1,1 327,-1,1 124,1,1 327,1,1 124,-1,1 124,-1,1 295,-1,1 327,1,1 124,-1,1 327,1,1 327,1,1 124,-1,1 327,1,1 327,1,1 124,1,1 124,1,1 327,1,1 124,-1,1 124,-1,1 327,-1,1 124,1,1 124,1,1 262,-1,1 124,1,1 119,1,1 295,-1,1 295,-1,1 327,-1,1 119,1,1 327,1,1 124,-1,1 295,1,1 124,-1,1 295,-1,1 327,1,1 124,1,1 295,1,1 124,1,1 327,1,1 124,1,1 295,-1,1 295,-1,1 122,1,1 327,1,1 295,1,1 124,1,1 295,1,1 327,1,1 327,1,1 124,1,1 295,-1,1 124,-1,1 124,-1,1 295,-1,1 327,-1,1 327,-1,1 130,1,1 327,1,1 295,-1,1 295,-1,1 124,1,1 295,1,1 295,1,1 124,-1,1 327,1,1 124,1,1 295,-1,1 124,1,1 327,-1,1 124,1,1 327,-1,1 295,1,1 124,-1,1 124,-1,1 295,-1,1 295,-1,1 126,1,1 295,1,1 295,1,1 124,-1,1 124,-1,1 295,-1,1 124,-1,1 295,1,1 124,-1,1 124,-1,1 295,-1,1 124,1,1 295,1,1 124,-1,1 295,-1,1 124,-1,1 327,1,1 124,1,1 327,-1,1 123,1,1 327,-1,1 124,1,1 327,1,1 124,-1,1 327,1,1 124,-1,1 327,-1,1 124,1,1 124,1,1 295,-1,1 327,-1,1 124,1,1 124,1,1 327,1,1 130,1,1 295,1,1 124,1,1 327,1,1 124,-1,1 124,-1,1 327,1,1 124,1,1 327,-1,1 124,-1,1 327,-1,1 124,1,1 295,-1,1 124,-1,1 124,-1,1 327,1,1 124,-1,1 327,-1,1 124,-1,1 124,-1,1 327,1,1 124,1,1 327,1,1 327,1,1 124,-1,1 327,-1,1 124,1,1 124,1,1 327,1,1 124,-1,1 327,-1,1 130,1,1 327,1,1 124,1,1 327,-1,1 124,-1,1 327,-1,1 124,1,1 327,-1,1 124,-1,1 327,-1,1 129,1,1 124,1,1 327,1,1 124,-1,1 124,-1,1 327,-1,1 124,1,1 124,1,1 327,-1,1 124,-1,1 124,-1,1 327,1,1 327,1,1 124,-1,1 327,1,1 327,1,1 124,-1,1 327,1,1 124,1,1 327,-1,1 123,1,1 327,-1,1 124,1,1 327,1,1 124,-1,1 327,1,1 124,-1,1 327,-1,1 124,-1,1 327,-1,1 130,1,1 327,1,1 124,1,1 327,-1,1 327,-1,1 130,1,1 327,1,1 327,1,1 124,-1,1 124,-1,1 327,-1,1 130,1,1 327,1,1 130,1,1 124,-1,1 124,-1,1 327,1,1 124,1,1 124,1,1 327,1,1 124,1,1 327,-1,1 327,-1,1 124,1,1 124,1,1 125,-1,1 125,-1,1 328,-1,1 125,1,1 328,1,1 130,1,1 328,1,1 130,-1,1 328,-1,1 125,-1,1 328,-1,1 328,-1,1 125,1,1 125,1,1 328,1,1 125,-1,1 328,1,1 125,1,1 328,-1,1 125,-1,1 125,-1,1 328,1,1 125,1,1 328,-1,1 130,1,1 328,1,1 328,1,1 130,1,1 328,1,1 125,1,1 328,1,1 125,-1,1 328,-1,1 125,1,1 328,1,1 328,1,1 125,-1,1 328,-1,1 125,-1,1 328,-1,1 125,1,1 125,1,1 328,-1,1 125,-1,1 125,-1,1 328,1,1 328,1,1 125,1,1 125,1,1 328,1,1 130,1,1 328,-1,1 328,-1,1 130,1,1 328,1,1 125,-1,1 328,1,1 125,1,1 328,1,1 125,-1,1 328,1,1 125,-1,1 328,1,1 125,1,1 125,1,1 328,1,1 125,-1,1 125,-1,1 328,-1,1 328,-1,1 125,1,1 328,1,1 125,1,1 328,-1,1 125,-1,1 328,-1,1 125,1,1 328,1,1 328,1,1 125,-1,1 328,1,1 125,1,1 328,-1,1 328,-1,1 125,-1,1 328,1,1 125,1,1 328,-1,1 125,-1,1 328,1,1 125,1,1 328,-1,1 130,1,1 328,-1,1 328,-1,1 130,1,1 125,-1,1 328,1,1 125,1,1 328,1,1 125,-1,1 328,-1,1 328,-1,1 125,1,1 328,-1,1 328,-1,1 125,-1,1 328,-1,1 125,1,1 328,-1,1 125,-1,1 328,1,1 328,1,1 125,1,1 328,-1,1 125,-1,1 328,1,1 328,1,1 125,1,1 328,-1,1 125,-1,1 328,-1,1 125,1,1 292,1,1 261,1,1 261,1,1 259,1,1 228,1,1 226,1,1 195,-1,1 195,-1,1 226,1,1 259,1,1 292,1,1 159,1,1 262,-1,1 262,-1,1 154,1,1 229,1,1 229,1,1 158,-1,1 158,-1,1 327,1,1 327,1,1 158,1,1 158,1,1 229,-1,1 229,-1,1 154,1,1 262,1,1 262,1,1 159,1,1 196,-1,1 163,1,1 327,-1,1 163,1,1 93,1,1 262,-1,1 262,-1,1 88,1,1 229,1,1 229,1,1 91,-1,1 91,-1,1 64,-1,1 327,-1,1 64,1,1 327,1,1 91,1,1 91,1,1 229,-1,1 229,-1,1 88,1,1 262,1,1 262,1,1 91,1,1 91,1,1 97,1,1 196,1,1 124,-1,1 124,-1,1 327,-1,1 327,-1,1 124,1,1 124,1,1 327,1,1 327,1,1 124,-1,1 124,-1,1 327,1,1 124,1,1 124,1,1 327,1,1 327,1,1 124,-1,1 124,-1,1 327,-1,1 327,-1,1 124,1,1 124,1,1 327,-1,1 196,-1,1 196,-1,1 97,1,1 327,-1,1 97,1,1 327,1,1 295,-1,1 295,-1,1 64,1,1 327,-1,1 64,1,1 196,1,1 196,1,1 64,1,1 327,1,1 64,1,1 31,1,1 327,1,1 31,-1,1 295,1,1 295,1,1 31,1,1 327,-1,1 31,1,1 64,1,1 327,-1,1 64,1,1 327,1,1 97,1,1 327,-1,1 196,-1,1 97,1,1 327,-1,1 97,1,1 196,1,1 97,1,1 327,1,1 327,1,1 97,1,1 196,-1,1 97,1,1 327,-1,1 97,1,1 196,1,1 327,-1,1 97,1,1 327,1,1 327,1,1 163,1,1 196,1,1 196,1,1 163,1,1 327,1,1 163,1,1 196,-1,1 196,-1,1 163,1,1 327,-1,1 130,1,1 327,1,1 130,1,1 327,-1,1 91,-1,1 91,-1,1 229,1,1 91,1,1 91,1,1 229,1,1 91,-1,1 91,-1,1 229,-1,1 229,-1,1 91,1,1 91,1,1 327,-1,1 91,-1,1 91,-1,1 229,1,1 229,1,1 91,1,1 91,1,1 229,-1,1 91,-1,1 91,-1,1 229,-1,1 91,1,1 91,1,1 327,-1,1 91,-1,1 91,-1,1 229,1,1 91,1,1 91,1,1 229,1,1 91,-1,1 91,-1,1 229,-1,1 229,-1,1 91,1,1 91,1,1 327,1,1 327,1,1 91,-1,1 91,-1,1 229,1,1 229,1,1 91,1,1 91,1,1 229,-1,1 91,-1,1 91,-1,1 229,-1,1 91,1,1 91,1,1 196,-1,1 130,1,1 196,-1,1 130,1,1 327,1,1 130,1,1 196,1,1 130,1,1 327,-1,1 196,1,1 130,1,1 327,1,1 130,1,1 327,-1,1 130,1,1 196,1,1 130,1,1 327,1,1 130,1,1 196,-1,1 130,1,1 327,-1,1 97,1,1 91,-1,1 91,-1,1 262,-1,1 262,-1,1 91,1,1 91,1,1 196,-1,1 196,-1,1 91,-1,1 91,-1,1 262,1,1 262,1,1 91,1,1 91,1,1 196,1,1 196,1,1 91,-1,1 91,-1,1 262,-1,1 262,-1,1 91,1,1 91,1,1 327,-1,1 91,-1,1 91,-1,1 262,1,1 262,1,1 91,1,1 91,1,1 196,-1,1 196,-1,1 91,-1,1 91,-1,1 262,-1,1 262,-1,1 91,1,1 91,1,1 196,1,1 196,1,1 91,-1,1 91,-1,1 262,1,1 262,1,1 91,1,1 91,1,1 327,1,1 97,1,1 130,1,1 196,-1,1 130,1,1 196,1,1 130,1,1 91,-1,1 91,-1,1 262,-1,1 262,-1,1 91,1,1 91,1,1 196,-1,1 196,-1,1 91,-1,1 91,-1,1 262,1,1 262,1,1 91,1,1 91,1,1 196,1,1 196,1,1 91,-1,1 91,-1,1 262,-1,1 262,-1,1 91,1,1 91,1,1 327,-1,1 91,-1,1 91,-1,1 262,1,1 262,1,1 91,1,1 91,1,1 196,-1,1 196,-1,1 91,-1,1 91,-1,1 262,-1,1 262,-1,1 91,1,1 91,1,1 196,1,1 196,1,1 91,-1,1 91,-1,1 262,1,1 262,1,1 91,1,1 91,1,1 327,1,1 130,1,1 196,-1,1 130,1,1 196,1,1 130,1,1 324,1,1 91,-1,1 229,-1,1 91,1,1 229,-1,1 91,-1,1 229,1,1 229,1,1 91,1,1 327,1,1 91,-1,1 229,-1,1 229,-1,1 91,1,1 229,1,1 91,-1,1 229,1,1 91,1,1 327,-1,1 91,-1,1 229,-1,1 91,1,1 229,-1,1 91,-1,1 229,1,1 229,1,1 91,1,1 324,1,1 91,-1,1 229,-1,1 229,-1,1 91,1,1 229,1,1 91,-1,1 229,1,1 91,1,1 327,-1,1 327,-1,1 91,-1,1 229,-1,1 91,1,1 229,-1,1 91,-1,1 229,1,1 229,1,1 91,1,1 327,-1,1 327,-1,1 91,-1,1 229,-1,1 229,-1,1 91,1,1 229,1,1 91,-1,1 229,1,1 91,1,1 327,-1,1 327,-1,1 91,-1,1 229,-1,1 91,1,1 229,-1,1 91,-1,1 229,1,1 229,1,1 91,1,1 327,1,1 91,-1,1 229,-1,1 229,-1,1 91,1,1 229,1,1 91,-1,1 229,1,1 91,1,1.